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SUMMARY

This report summarizes the results of a three year study sponsored by the Air Force Office of Spon-
sored Research under contract No. F49620-92-J-0496. The enthusiastic technical and administra-
tive effort of Drs. Spencer Wu and Brian Sanders of AFOSR are warmly acknowledged.

This project has involved analytical and experimental research across a family of structural me-
chanics and control problems. Our effort has been mainly addressed to four sets of research issues:

1. Solution and Validation Methodology for Simulation of Nonlinear Structural Systems
See Attachments [2,3,14].

2. NonlinearMechanics and Control of Flexible Structural and Robotic Systems
See Attachments [4-8,14-18].

3. Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics
See Attachments [9-11,13].

4. Radial Basis Approximation Methods and Associated Optimization Algorithms
See Attachments [12].

In addition to the above four sets of research issues, we have also engaged in significant re-
search on ancillary topics which are documented in the references listed in Attachment 1. The
above research spans a broad set of theoretical/conceptual [6,7,9-11,13-18], computational [2-
4,12,14], and hardware experimental [8] research topics.

In the text of this report, we present a brief guided tour of the results as a preamble to the nine-
teen attachments which present the details of the research methodology and results.
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1.0 Introduction
This report presents results achieved during a three year research project at Texas A&M

University sponsored by AFOSR under contract F49620-92-J -0496 PO001. The work was carried
out by the Principal Investigator (J. L. Junkins) and a team of mainly Ph.D. candidate co-research-
ers. As is evident from a brief review of the attachments, a substantial volume of research results
have emerged from this work. Given the volume of results, we decided to overview only the main
features of the results in the text, and make the technically more detailed attachments the heart of
our report.

The level of effort required to produce the attached results represents approximately five
man-years of total effort. Since only half that level of effort was funded by contract F49620-92-J-
0496, it is evident that the matching State of Texas support (Advanced Technology Project Num-
bers 999903-231 and 999903-232) has resulted in an augmentation of this project which consider-
ably leveraged the AFOSR support.

This report documents our results in four broad categories:
Solution and Validation Methodology for Simulation of Nonlinear Structural Systems
Nonlinear Mechanics and Control of Flexible Structural and Robotic Systems
Representation of Finite Rotations in 3 and N-Dimensions: Applications in Mechanics
Radial Basis Approximation Methods and Associated Optimization Algorithms

Attachment No. 1 lists 19 refereed publications that have been the result of this work during 1993-
1996, and also lists the graduate students that have been supported under this contract. In addition,
two additional students and a post-doctoral researcher have been supported under support of State
of Texas support (Advanced Technology Project Numbers 999903-231 and 999903-232) perform-
ing ancillary research. '

The discussion below overviews selected aspects of the contribution in each of the above
categories; the details are covered in the attachments.

2.0 Selected of Technical Results

In Attachment [2,3], we present some very significant results from this research project; we
have developed methodology for validation of solution accuracy of nonlinear dynamical response.
This methodology applies to a wide class of physical systems modeled as systems of ordinary, par-
tial, or integro differential equations and associated boundary condition operators. It permits the
analytical construction of exact solutions (along with rigorously consistent, small perturbing force
functions), which neighbor given approximate numerical solutions. We show that is is possible to
construct these special case exact solutions in spite of the fact that the original initial value problem
cannot be solved exactly in closed form. The research reported in these papers consist of basic an-
alytical results and a careful proof-of-concept experiments for several example systems described
by ordinary and partial differential equation systems. For a wide class of nonlinear dynamical sys-
tems described by ordinary differential equations, we have developed an algorithm and software
that represent a standardized approach which promises to be of broad utility. For the class of dis-
tributed parameter systems, we have worked several examples and established proof of concept,
however, we have not found it feasible to construct a general purpose software package for this




case. Shown below in Figure 1 is a slide format result abstracted from Attachment 3; we depict the
error surfaces between a family of approximate response solutions compared to an exact solution we
constructed using the method of Attachments [1,2].

Figure 1.

Structural Mechanics: Nonlinear Response Methodology

A Rigorous Means for Solution Validation - Junkins (Texas A&M)

® A method for construction of exact benchmark solutions neighboring available aproximate solutions.
® Provides capability to determine exact special case space-time solution errors of numerical methods.
® Permits rigorous validation of numerical methods => assess accuracy limitations of methodology.
@ Permits optimal tuning of a given numerical method (e.g., select step size, FEM grid, order, etc.).

@ Permits rigorous tradeoff studies for evaluating merits of competing numerical methods.

Refs.: Junkins, J. and Lee, S., *Validation of Finite Di ional App Solutions for Dynamics of Distributed Parameter Systems,”
Adv. in the Astron. Sciences, Vol. 85, pp. 2089-2111 (1994)
Lee, S., and Junkins, ., "C jon of Exact Benchmark Problems for Dynamical Systems,” Shock and Vibration, Vol. 1, No. 5, pp. 403-414 (1994).
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In Attachments [4,5,15,18], we present a substantial volume of new material on stability and
control of multi-body structural systems and, in particular, explore some of the conceptual, mathe-
matical, and numerical issues in underlying cooperation between two or more autonomously con-
trolled manipulators maneuvering a common paylod or object. For the typical case of redundant
actuation, there are an infinity of controls to affect essentially the same dynamical motion, however,
each control policy and resulting control forces represent different constraint loading on the struc-
ture. A familar example is two or more humans manipulating a heavy object such as a soffa or a pool
table; it is apparent that, due to actuator redundancy, the same rigid body trajectory can be acheived
by an infinity of actuation forces, but most of these control policies result in the actuators ‘fighting’
each other and imposing unnecessary constraint loads on the payload (and frustration of the actua-
tors). By defining an appropriate optimization policy, it is possible to minimize the norm of the con-
straint forces, for example, and thereby cause the manipulators to cooperate in carrying out the
maneuver. In Attachments [4,5], we develop a conceptual and mathematical basis for formulating
cooperative optimal control strategies and study the efficacy and robustness of this approach through
several simulation studies. Recently, Agrawal and his student Gary Yale at the Naval Postgraduate




School have successfully implemented this idea experimentally in collaboration with the Principal
Tnvestigator, and have verified that the approach has practical validity as well as theoretical ele-

gance.

In attachments [6], we extend the classical linear quadratic regulator (LQR) to admit ine-
quality constraints on the control variables. This modest extension of the LQR is very significant,
because one of the classical shortcomings of the LQR is that there was no apriori guarantee that
the opt control derived was in fact physically realizable. A numerical example is given in [6], to
illustrate that the algorithm obtained is indeed numerically feasible.

In Attachment [7], we present an analytical result; we introduce a novel theoretical path for
asymptotic stability analysis for systems wherein the chosen Lyapunov function is negative semi-
definite. We use the new methodololgy to show that a commonly applied output feedback control
law (for controlling a symmetric four appendage structure) guarantees asympotic stability of all in-
finity of the anti-symmetric- in-unison modes, however, it does not guarantee the stability of the
infinity of anti-symmetric- in- opposition modes which are both unobservable and uncontrollable.

Attachment [8] presents analytical, computational, and experimental results for near mini-
mum-fuel and near-minimum-time control of the ASTREX structure at Phillips Laboratory. The
results in [8] establish the validity and effectiveness of our overall approach, however some exper-
imental anomalies were revealed due to several constraints imposed by the present sensor/actutor
system development.

In attachments [9-11,13], we present another significant result of our research that we ex-
pect to have important consequences. We have been able to greatly extend and generalize a fun-
damental classical result known as the Cayley Transform, to establish a revolutionary method for
parameterization of NxN proper orthogonal matrices. These results permit one to view the evlo-
lution of an NxN orthogonal matrix in terms of a minimal [N(N-1)/2-dimensional] set of ‘orienta-
tion parameters’ that are closely related to the quaternions or Euler Parameters famous for the
usual 3x3 orthogonal direction cosine matrix case. Thus the evolution of an NxN orthogonal ma-
trix can be qualitatively conceptualized as the motion of a generalized rigid body reference frame.
Since the spectral decomposition of all NxN symmetric positive definite matrices (which abound
in mechanics!) is a similarity transformation involving the orthogonal NxN matrix of eigenvectors
and the N positive scalar eigenvalues, it is apparent that nonsingular minimal parameter descrip-
tions of orthogonal matrices immediately enables minimal parameter descriptions of a general pos-
itive definite N*N matrices. Several applications are considered in the references that illustrate the
utility and support the conclusion that these results are fundamental in nature and will have a broad
impact.

In attachment [12], we present a method for converting a general functional optimization
problem into a nonlinear programming problem by prameterizing the unknown control using radial
basis functions (RBFs). An adaptive RBF approximation method is introduced wherein an initially
small number of basis functions is gradually increased with the center locations being decided
based upon the sensitivity of the trajectory to variations of the weights on the currently existing set
of RBFs. The method adapts both the center locations and the local sharpness of the RBFs, and
uses the converged result from the previous iterations to initiate the subsequent iteration with an



accurate starting iterative which satisfies the terminal boundary contions. The convergence and
efficacy of the method is studied through two examples (an optimal trajectory problem and an op-
timal aerodynamic shape problem) fopr which the optimal solution has been previously determined
in the literature. The method is also compared to a non-adaptive RBF approach and the results
clearly establish the validity and attractiveness of this approach.

In attachment [14], we introduce a potentially revolutionary method for simulating dynam-
ics of nonlinear multi-body systems wherein a configuration-variable mass matrix occurs. In con-
ventional algorithms, computing acceleration requires inversion of this configuration-variable
mass matrix which directly limits the speed and precision, and ultimately, the practical dimension-
ality of multibody simulations. It also means that so-called order N methods are not really order
N when considering the dynamics of nonlinear flexible multibody systems. The new method in-
troduced involves a unique coordinate transformation to a new coordinate system which maps the
instantaneous mass matrix into an identity matrix. This is not done by solving a local algebraic
eigenvalue problem via conventional solvers, but rather new differential equations are derived that
inherently generate the instantaneous diagonalizing transformation. The validity and utility of the
algorithm is proven conclusively in [14], including a low dimensioned application, and in [19], we
apply it to a 14th order dynamical model for the Freewing Scorpion UAV. These analytical and
numerical studies prove the validity and show that this formulation has broad applicability in non-
linear multi-body dynamics.

3.0 Conclusions

It is evident that the research progress is excellent on many fronts. We have achieved sig-
nificant analytical progress and in several important instances have progressed from introduction
of a basic concept, to analytical studies, and proof-of-concept conputational and hardware demon-
strations, within this three year effort. Of course, this progress has been achieved in large measure
due to historical investments of AFOSR resources in support of our effort to develop the analytical
and experimental foundation upon which this progress rests. It is also significant that the ancillary
financial support obtained from Texas Advanced Research Project grants has greatly accelerated
our work and thereby leveraged the AFOSR investment. It is of special significance to note that
five exceptional graduate students and a postdoctoral researcher have been supported during this
project and three of the four Ph. D. students have successully defended their dissertations. Thus,
quite apart from the technical fruits of this research project, the development of outstanding young
engineers and scientists has been significant indeed.
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Construction of Benchmark

Problems for Solution of
Ordinary Differential
Equations

An inverse method is introduced to construct benchmark problems for the numerical
solution of initial value problems. Benchmark problems constructed in this fashion
have a known exact solution, even though analytical solutions are generally not
obtainable. The process leading to the exact solution makes use of an initially avail-
able approximate numerical solution. A smooth interpolation of the approximate
solution is forced to exactly satisfy the differential equation by analytically deriving a
small forcing function to absorb all of the errors in the interpolated approximate
solution. Using this special case exact solution, it is possible to directly investigate the
relationship between global errors of a candidate numerical solution process and the
associated tuning parameters for a given code and a given problem. Under the as-
sumption that the original differential equation is well-posed with respect to the small
perturbations, we thereby obtain valuable information about the optimal choice of the
tuning parameters and the achievable accuracy of the numerical solution. Five illus-

trative examples are presented. © 1994 John Wiley & Sons, Inc.

INTRODUCTION

We consider the initial value problem for linear
or nonlinear ordinary differential equations. In
general, we do not know the true solution and
any numerical method gives us an approximate
solution; the numerical solutions generally con-
tain two sources of error, round-off and trunca-
tion (Gear, 1971). We must somehow evaluate
the accuracy of a given approximate solution,
typically without knowing the true solution. The
most common way of assessing the true error of
a numerical solution is to reduce some tolerance
parameter, integrate again, and compare the
results (Hairer et al., 1987; Shampine, 1987). Al-
though more sophisticated error analyses can be
conducted, there is no general way to absolutely

Received October 10, 1993; Accepted April 25, 1994.

Shock and Vibration, Vol. 1, No. 5, pp. 403-414 (1994)
© 1994 John Wiley & Sons, Inc.

guarantee the final accuracy of the solutions.
This does not preclude obtaining practical solu-
tions for most applications, but it remains very
difficult to answer subtle questions.

Many numerical methods are available for
solving initial value problems. Early numerical
methods were merely fixed step size implementa-
tions and these methods were straightforward to
implement, but the results were often inconclu-
sive. In the 1960s, research on numerical meth-
ods for highly nonlinear initial value problems led
to adaptive methods that could automatically
vary the step size and/or the order of the method
to match a user-specified local error tolerance at
each step. This work led to the current genera-
tion of numerical methods. Due the presence of
round-off error, it is common to find that accu-

CCC 1070-9622/94/050403-12
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racy improves until step sizes or tolerances are
decreased below some critical value; the accu-
racy then degrades while solution costs increase
(Gear, 1971; Shampine, 1974). Shampine (1974,
1980) pointed out that a typical adaptive code
will not quit when impossible accuracies are
specified. He also reported that the standard
ways to assess true errors may lead to wrong
conclusions even using the best codes available
at that time. Shampine (1974) considered a ma-
chine dependent limit on the step size and one on
the local error tolerance, and he suggested a way
of automatically selecting an initial step size that
appears to be reliable and reasonably efficient
(Shampine, 1978). Enright (1989) pointed out that
the relationship between the accuracy obtained
and the specified tolerances is generally ex-
tremely sensitive to both the problem and the
method. In particular, for Runge~Kutta methods
with interpolants, he proposed an error and step
size control mechanism based on monitoring and
controlling the defect of a continuous approxima-
tion rather than the local error of the discrete
approximation.

In view of the historical and recent develop-
ments, we observe that the theory of differential
equation solvers is far from complete, so that the
understanding of a given code’s performance in-
variably requires a study of experimental results.
Hull, et al. (1972) and Krogh (1973) provided two
outstanding collections of test problems for this
purpose. These test problems have been used in
the development and testing of many codes and
can be regarded as standard benchmark prob-
lems for initial value problem solvers. Whenever
we know the true solutions of a test problem,
however, we can investigate the relationship be-
tween the true, or global error and the tuning
parameters of a given code (e.g., step size, local
error tolerance, order, etc.). The relationship be-
tween the behavior of an algorithm on a
benchmark problem and the behavior of the algo-
rithm on a problem of interest is difficult to estab-
lish. Because the problem of interest is almost
never exactly solvable, we need a means to es-
tablish a customized benchmark problem that is a
close neighbor of any given problem of interest.
We introduce here a broadly applicable inverse
method that constructs a neighbor of a given nu-
merical approximate solution; the neighboring
problem does in fact exactly satisfy the original
differential equations (with a known, small
forcing function) and serves as an excellent
benchmark problem. More specifically, we pre-
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sent a broadly useful approach to construct a
benchmark problem near the problem of interest
in a particular application. By virtue of the fact
that the benchmark problem is a customized near
neighbor of the problem of interest, we show
that numerical convergence studies on the
benchmark problem are directly useful in algo-
rithm selection, tuning, and accuracy validation.

The difficulties mentioned earlier result from
not knowing the true solution. What happens if
we are able to construct a problem-dependent
“exact”” benchmark problem? First we can eas-
ily investigate the true error/parameter relation-
ship and find the limiting precision and associ-
ated values of critical parameters of a given
code. Second, the problem of how to assess
global error vanishes automatically. Finally, we
have an absolute standard to find which method
is most suitable for an important member of our
particular family of problems. The sensitivity of
the accuracy/tolerance relation of a given
method is primarily a result of the heuristics used
to monitor the local error and control the step
size. If we do not know the true solution. then it
is very hard to assess which method is the best
for a class of problems because of the high sensi-
tivity of accuracy to variations in step size con-
trol logic. The remaining and most critical ques-
tion is: How useful is the convergence and
accuracy information obtained for the exactly
solved benchmark problem, in regard to drawing
conclusions for the (neighboring) original prob-
lem? It is important to recall that the benchmark
problem includes a regular perturbation to the
original problem. If the perturbation is small
enough, it is to be expected that all derivatives
will be close for the two problems and conse-
quently, the behavior of standard discrete vari-
able methods will be similar both with respect to
accuracy and stability. It is certainly true that
there are open questions on this issue needing
further investigation; however, by constructing a
family of neighboring benchmark problems, it is
usually possible to judge the size of the neighbor-
hood in which the convergence and accuracy
properties are relatively invariant with respect to
the perturbation. Several applications presented
herein provide strong evidence supporting the
practicality of this approach.

In this study we propose a method to con-
struct a benchmark problem that is a close neigh-
bor of a given approximate solution of the origi-
nal problem. The benchmark problem is
constructed so that it satisfies exactly the differ-



ential equation but with a known, usually small,
time varying forcing function. We can investigate
the global error/parameter relationship of the
benchmark problem with the true solution in
hand. Under the assumption that the original
problem is well-posed with respect to small per-
turbations, we have valuable information about
the optimal parameters and the accuracy of the
numerical solution. Actually the stability as-
sumption is not so severe because any numerical
method needs it more or less to obtain reliable
solutions. Also, by introducing several neighbor-
ing approximate solutions with initial condition
and parameter variations, then repeating the en-
tire process, it is possible to experimentally es-
tablish insight on the size of the region over
which the convergence properties are invariant.

Lee and Junkins (1993) presented two com-
puter codes for first order and second order sys-
tems of differential equations, when the classical
Runge-Kutta fourth order method with a fixed
step size was used. An illustrations, we show the
utility of these codes for two simple nonstiff
problems. When we use the IMSL (1989) subrou-
tines DIVPRK and DIVPBS as solvers, we show
the utility of this methodology for two celestial
mechanics problems (Krogh, 1973) that have
been used as test problems several times in the
literature. Subroutine DIVPRK uses the Runge-
Kutta formulas of order five and six developed
by J. H. Verner. Subroutine DIVPBS uses the
Bulirsh—Stoer extrapolation method and will ter-
minate when impossible accuracies are specified.
In the fifth example, we consider a typical stiff
problem and discuss some limitations and restric-
tions of this methodology.

CONSTRUCTION OF EXACT
BENCHMARK PROBLEMS

We want to construct new differential equations
that are slightly perturbed versions of the original
differential equations. For these new differential
equations, we can establish the true analytical
solution using an algebraic inverse idea. Then we
can investigate the error/tolerance relationship
with an absolute standard. Under local stability
assumptions, we have valuable information
about the optimal parameters and the accuracy of
the particular numerical solution for the given
original differential equations. The stability as-
sumption is easily validated by constructing
some neighboring benchmark problems.
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Here we introduce one way for constructing
exact benchmark problems. We take a global ap-
proach for the perturbation term instead of a
piecewise polynomial perturbation to avoid the
lack of smoothness at break points. First we con-
sider the following two distinct initial value prob-
lems:

= filx,1). x(tg) = xo overto=t=1Is m
fi: RN X R — RN

= filx, %, 1), x(to) = X0, X(1p) = X
overrp=t=1t (2
fo: RV X RN X R — RV,

A candidate discrete approximate solution can be
obtained from the original first or second order
differential Egs. (1) and (2) using a numerical
method. We distinguish between first and second
order systems because there are certain draw-
backs if one converts a naturally second order
system into a first order system. To establish a
continuous, differentiable motion near a given
approximate solution, least square approxima-
tion using the discrete version of the Chebyshev
polynomials can be invoked to obtain the solu-
tion from the the already discrete solution (Abra-
mowitz and Stegun, 1972; Junkins, 1978). We
first consider the least square approximation pro-
cess. There are n data points denoted as

Xy = g(tl)' Xy = g(tl), . g(tn)

where t; are the values of the equally spaced in-
dependent variable (h, = (t;.; — t;) = constant).

A linear transformation of independent vari-
ables should be made to use discrete orthogonal-
ity with weight function w(z) = 1,

- t —
1

where £, is the constant increment of ¢,
x = g(t) = G(1). (3)

From n data points, the function G can be estab-
lished as a linear combination of m basis func-
tions that form the discrete version of the
Chebyshev polynomials as follows:

m

G@t) = D, aT,(1)
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where m < n and Ti(?) is the ith Chebyshev poly-
nomial.

The Chebyshev polynomials are defined as
follows: If u,, = m(m =0,1,2,. .., N)and
w(u) = 1, then

< ml " n+m\ 4N - m)!
T, = 2 (=) (m)( m )(u—m)wz'

With the recurrence relations:

Tow) =1

Tw) =1-— %
(n + DIN = n)Tper() = @n + DN = 2u)T,(u)
—n(N + n+ DT, ().

Note that the recurrence relations make it easy
to evaluate an expansion in Chebyshev polyno-
mials, and a similar recurrence makes it easy to
evaluate the derivative of the expansion.

Using discrete orthogonality of the Chebyshev
polynomials, the typical coefficient a; can be ob-
tained as follows:

o = 2y xiTi(t)
TOZL T
where 1 = j=m.

We can find g(t) from G(1) because g(1) =
G(1(1)). Using the least square approximation,
we can find the continuous, differentiable, ana-
lytical solution x(7) of Eq. (3) that interpolates
the n discrete numerical solutions obtained from
Egs. (1) and (2). Now this analytical expression
x(7) does not satisfy exactly the Egs. (1) and (2).
However, substituting x(¢), x(1) into Eq. (1) al-
lows us to determine an analytical function for
the perturbation term e,(¢) that appears in the
following differential equation:

X(1) = filx(®), 1) + e\) = Filx, 1. (4

Alternatively, if the system is second order, then
substituting x(t), x(1), X(t) into Eq. (2) allows us
to determine the perturbation term e,(t) that ap-
pears in the following differential equation:

() = filx(r), x(1), 1) + ex(t) = Falx, X, 1).
)]

Note that because x(r), x(1), %(¢) are available
functions, F(x, 1), Fa(x, X, t) are also available
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functions that satisfy Egs. (4) and (5) exactly,
and x(r) is a neighbor of the original numerical
solution {x;, X2, . . . , X,}. By construction, the
functions e (1) = X(1) — fi(x(1), 1) and ex(t) =
#(1) — folx(1), (1), t) are known analytically and
therefore these small forcing functions can be
computed exactly at all ¢. These functions are
programmed and Eqgs. (4) and (5) can be solved
by numerical methods and the results can be
compared to the exact x(t), x(z). The above
mathematical procedure can be performed in an
automated fashion using computer symbol ma-
nipulation. The symbol manipulation can also au-
tomate the generation of C or FORTRAN Code
to compute function e, (t) and/or e(r).

Now Egq. (4) is a benchmark problem neigh-
boring Eq. (1) and we have arranged that x(1),
%(z) satisfy Eq. (4) exactly; and Eq. (5) becomes
the benchmark problem neighboring Eq. (2) and
we have arranged that x(), X(1), ¥(r) satisfies Eq.
(5) exactly. We obviously want the perturbation
function e(?) to be as small as possible, that is,
the benchmark problem is not only a near neigh-
bor of the original discrete solution, but it also
very nearly satisfies the same differential equa-
tions. The previously discussed least square ap-
proximation method typically gives the poorest
approximation near the ends of the interval. This
may result in a relatively large e(7) near the initial
and final times. To avoid this problem we can
integrate Eqs. (1) and (2) over the enlarged inter-
val to- <t = tp. (Where to- < o, ty- > 17) and use
these numerical results as generators for analyti-
cal solutions over the original interval (1 =1 =
t;). Experience indicates that a 20% “enlarge-
ment”” {(tr — 1) = 1.2(1y — to)} is almost always
sufficient to support good interpolation over the
original interval (1, = t < ;). If the measure of
e(r) is judged too large then we increase the num-
ber of Chebyshev polynomials m to reduce e(?)
over the whole interval, or ‘‘start over’ by at-
tempting to find a better approximate numerical
solution to initiate the process. Figures 1 and 2
provide logical flow charts showing construction
of a benchmark problem and an associated con-
vergence study for second order systems. h

ILLUSTRATIVE EXAMPLES

Now we demonstrate the previous ideas using
five initial value problems for ordinary differen-
tial equations. First we show the utility of the
computer codes (Lee and Junkins, 1993) for two
simple nonstiff problems. Then, two celestial me-



GIVEN A DYNAMICAL SYSTEM
() = f(=(1),2(1),1)

z(io) = Zg, i(io) =gzg, t <t < tl

l

NUMERICAL SOLUTION PROCESS
( for some setting on tuning parameters such as h)

l

APPROXIMATE NUMERICAL SOLUTION

{,, %3, +++, o} where & = Z(%)

l

SMOOTH ORTHOGONAL APPROXIMATION
NEAR {ilv 521 °tty 5ﬂ]’

l

EXACT SOLUTION OF BENCHMARK PROBLEM
zb(t)

l

INVERSE DYNAMICS
e(t) = s(t) — fzs(t), 6(2), 1)
BENCHMARK PROBLEM
#(t) = f(=(t),2(1),1) + (1)

z(to) = z5(to), &(to) = £1(t0), to <t <ty

FIGURE 1 Flow chart "fm" construction of a
benchmark problem.

chanics problems are introduced to illustrate the
utility of this methodology when we use the
IMSL (1989) subroutines DIVPRK and DIVPBS.
Finally, we consider a stiff problem in the fifth
example.

First Order Systems

We consider the following pair of nonlinear dif-
ferential equations.

X =2x; — 2x1x2

©

X = —Xx3 + XiX2

where x;(0) = 1 and x,(0) = 3, and we seek the
solution over the interval 0 <t =< 10.

First, we solve Eq. (6) using the Runge-Kutta
fourth order method to evaluate the candidate
discrete approximate solution. Here we use 121
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data points over the 20% enlarged time interval
—1 =1t =11. Second, we establish a continuous,
differentiable, analytical expression for interpo-
lating x,(¢) and x»(r) from the discrete approxi-
mate solution. We use 51 Chebyshev polynomi-
als for fitting. Finally we substitute x;(t). xx(1),
xi(1), %(t) into Eq. (6) and determine functions for
e,(1) and e(¢) that satisfy the following equations
exactly

)21 = 2X| - 2X|X2 + e

0

Xy = —Xx2+ x1x3 + es.

Now, Eq. (7) provides a benchmark problem
for Eq. (6), and x,(1), x(¢) are the solutions that
satisfy Eq. (7) exactly. Upon solving Eq. (7) nu-
merically with various values chosen for h, we
establish the relationship between step size and
global error. When we use the pointwise error in
the root mean square sense, Fig. 3 shows the
relationship in log/log scale. The critical value 4
is about 0.0005 and if 4 decreased below 0.0005,
then the results begin to deteriorate. The rate of
convergence is 4 in this problem and this coin-
cides with the fact that an rth order method
should have a global error of O(k") in the absence
of arithmetic errors (Gear, 1971). Figure 4 shows
the perturbation terms over the time interval. For
the benchmark problem, the numerical results
are very reliable when we use 0.0005 as /i be-
cause the error measures are about 107'* while
the solutions for x,(t), x»(t) vary from 10~ to 10°
order. Now we turn our attention to the original
problem. Figure 5 shows the relationship be-
tween step size and error at ¢ = 10 on a log/log
scale for the original problem. Because we do not
know the true solution, we could follow the com-
mon way of assessing the accuracy of a family of
approximate solutions using the IMSL (1989)
subroutines DIVPRK and DIVPBS. Comparing
Figs. 3 and 5, we notice that the shape is roughly
similar but, in Fig. 5, the critical value A is 0.0002
instead of 0.0005. The reason for this minor dis-
crepancy is the relatively large perturbation
terms in Fig. 4. If we decrease the perturbation
terms e(t) and e,(¢) by finding a higher order,
more accurate interpolation and thereby make
the benchmark problem closer to the original Eq.
(6), then we can reduce this discrepancy.

Second Order Systems

We consider the following nonlinear, nonautono-
mous second order differential equation.

14
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GIVEN A BENCHMARK PROBLEM
( with a known exact solution zp(t))
#(t) = f(=(t),2(t)t) + e(t)
z(to) = zs(to), #(to) =2s(t), to <t <ty

|

INITIAL SETTING ON TUNING PARAMETERS
FOR NUMERICAL SOLUTION PROCESS -

NUMERICAL SOLUTION PROCESS

|

VARY APPROXIMATE NUMERICAL SOLUTION
TUNING OF THE BENCHMARK PROBLEM
PARAMETERS z,

|

EVALUATE ERROR MEASURE

[EPE|

Do we have

enough data for convergence
study ?

STUDY THE CHARACTERISTICS
GLOBAL ERROR vs TUNING PARAMETERS

FIGURE 2 Flow chart for convergence study.

0.6
-7
—— X, error norm 1
&ssea X, €rror norm 1

o
23
1

Perturbation
(=]
o

LOGo(Error Measure)
]
s

-124 -0.3 4
213 T T T T
-4.5 -35 -25 ~1.5
LOGso(h) I T SR T s 0
. Time
FIGURE 3 Global error vs. step size for the
benchmark problem. FIGURE 4 Perturbation terms of example 1.
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FIGURE 5 Error (at + = 10) vs. step size for the
original problem.

¥=-x-=0.1(1+ x)x + 0.1x3 + sin 3t (8)

where x(0) = 1 and X(0) = 0,-and 'we seek the
solution over the interval 0 =< ¢ < 10. We convert
Eq. (8) to a first order system as follows:

X=X
. 2 3 . ®
X = —Xp — 0.1(1 + x{)x; + 0.1x7 + sin 3t

where x;(0) = 1 and x,(0) = 0.

We solve Eq. (9) using the Runge-Kutta
fourth order method to evaluate the candidate
discrete approximate solution. Here we con-
struct the interpolated solution using 121 data
points over the 20% enlarged time interval —1 <
t = 11. An analytical expression for x;() is ob-
tained from the discrete approximate solution. In
this problem, a degree 30 Chebyshev polynomial
is established by the least square approximation.
Substituting x,(¢), X,(z), X,(¢), into Eq. (8) we cal-
culate the function e(r) that satisfies the follow-
ing equation exactly.

¥=—-x-=0.1(14 x)x + 0.1x3 + sin 3¢t + e.
(10)

To use the Runge-Kutta method, Eq. (10) can be
converted to a first order system as follows:

1")=X2 (”)
%= —x; — 0.1(1 + x}x, + 0.1x} + sin 3t + e.

Now, Eq. (10) becomes a benchmark problem
for Eq. (8), and x(¢) is an algebraic function that
satisfies Eq. (10) exactly. When we use the
pointwise error in the root mean square sense,
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X, error norm
_g] #**** x; error norm

LOGo(Error Measure)
|
o

-13 T Y T T T T
~-4.5 -3.5 -2.5 -1.5

LOG;o(h)

FIGURE 6 Global error vs. step size for the
benchmark problem.

Fig. 6 shows the relationship between global er-
ror and step size. The rate of convergence is 4 as
expected. Figure 7 shows the perturbation term
over the time interval. The critical value for step
size is about 0.001. Now we consider the original
problem. The relationship between step size and
error at f = 10 is shown in Fig. 8 when we follow
the common way assessing the true solution us-
ing the IMSL (1989) subroutines DIVPRK and
DIVPBS. Comparing Figs. 6 and 8. we observe
that the critical value h and the accuracy are al-
most the same.

We change the initial conditions slightly and
the nonautonomous term in the differential equa-
tion as follows:

i=-x—0.1(1 + x)¥ + 0.1x3 + 1.2 sin 3¢
(12)

where x(0) = 1.2 and ¥(0) = 0.2 over the interval
0=<r=10.

e(t)

OE+0+

Perturbation

-1E-2
0

e

—_— ,
4 6 8 10
Time

FIGURE 7 Perturbation term of example 2.
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51
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X, error
sasebt Xp €I'TOY

|
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LOGo(IError!)
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~14 T T

-4.5 25  -15

-35
LOGo(h)

FIGURE 8 Error (at t+ = 10) vs. step size for the
original problem.

After using the same procedure, we obtain the
global error/step size relationship shown in Fig.
9. We notice that Figs. 6 and 9 are almost the
same. In other words, the critical value for h and
the accuracy are almost identical even though
there are 20% perturbations in the initial condi-
tion and the forcing term in the differential equa-
tion, in this case.

Two Body Problem

We consider the simple two body problem. The
exact solution is periodic with period 27 and the
solution traces out an ellipse with eccentricity
0.6.

= —x/r}, x(0)=04, x0)=0

y=—ylr}, y0)=0, y0)= 2

where r = (x2 + y)'2

X; error norm
saaas X, €rror norm

LOGo(Error Measure)
]
=

3 7 Gs 0 -2 -15
LOG,o(h)

FIGURE 9 Global error vs. step size for the

benchmark problem of 20% perturbations.

(13)‘

DIVPRK

—— position
seeea velocity

LOG,s(Absolute Error)

o s -10 -5 0
LOG,o(Tolerance)

FIGURE 10 Absolute error vs. tolerance for the
benchmark problem (DIVPRK).

These equations can be solved exactly (Battin.
1987): the analytical solution is not included here
because of space limitations. We reformulate Eq.
(13) as a first order system as follows:

i’] = X2

g2 = e+ XD

. (14)
X3 = Xy

¢, = —Y 2 2y3/2

X4 = —.\3/(.\'; + X3) -

where x,(0) = 0.4, x2(0) = 0, x3(0) = 0, xy(0) = 2.

We solve Eq. (14) using DIVPRK to evaluate
the candidate discrete approximate solution.
Here we use 121 data points over the 20% en-
larged time interval and a degree 50 Chebyshev
polynomial approximation is used for the least
square fitting of x,() and x3(1). After construct-
ing the benchmark problem, we do an absolute
error test on (0. 277). Figures 10 and 11 show the

T )
0
i DIVPBS
™ i /
3 ! . :
= i ——— position /’\:
& 1 aeeea velocity /
-5
v 4
-t
El ]
S ]
g 4
< 104
\E 4
S J
(@] 4
hus
-15+——— —

-15 -10 -5
LOG,o(Tolerance)

FIGURE 11 Absolute error vs. tolerance for the
benchmark problem (DIVPBS).
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FIGURE 12 Absolute error vs. tolerance for the two
body problem (DIVPRK).

relationship between absolute error and toler-
ance in log/log scale when we use DIVPRK and
DIVPBS for the benchmark problem. Figures 12
and 13 show the relationship between absolute
error and tolerance in log/log scale when we use
DIVPRK and DIVPBS for the original two body
problem. We notice that Figs. 10 and 11 are al-
most identical to Figs. 12 and 13, respectively.
The perturbation terms are shown in Fig. 14. We
plot the relationship between the number of func-
tion calls and the absolute error in Fig. 15. Thus
the benchmark problem (constructed by the
method of this study) essentially gives results
that are identical to those obtained by using the
exact solution of the original problem.

Euler Equations of Motion

We consider the Euler equation of motion for a
rigid body without external forces,

%1 DIVPBS
= /
e ——— position i
e seeas velocity

_5—
Q 4
-
=
o
g 4
<« —10-
\-—é- p
5
(@] 4
.J -4
—15+—
-15 0

"o -5
LOG,s(Tolerance)

FIGURE 13 Absolute error vs. tolerance for the two

body problem (DIVPBS).
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o-8-6-8-0 e, t
- t
=
o
]
2 {:
. 0.000 -: NS
= g AVARV
pal
e
v
=%
-0.015 T - . .
(1] 2 4 6

Time

FIGURE 14 Perturbation terms of the two body
problem.

.\"1 = X2X3
,\.'3 = "0.51.\'3.\‘| (15)
.\;3 = —Xi1X2

where x,(0) = 0, x2(0) = 1, x3(0) = 1.

The classical exact solutions of Eq. (15) are
the Jacobian elliptic functions (Abramowitz and
Stegun, 1972) as follows:

sn(t ] 0.51),
cn(t | 0.51).

x> = dn(t ] 0.51),

X

X3

They are periodic with a quarter period K where
K = 1.86264 08023 32738 55203 - in this
case.

We solve Eq. (15) using DIVPRK to evaluate
the candidate discrete approximate solution. To

5
f Two Body Problem
==eeo DIVPRK
. >=222 DIVPBS
&)
28
22
&S
S
=
"
-
-15 -10 -5 0

LOG,o(Absolute Error)

FIGURE 15 Number of function calls vs. absolute
error.
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FIGURE 16 Absolute error vs. tolerance for the
benchmark problem (DIVPRK).

establish a benchmark using our method, we use
121 data points over the 20% enlarged time inter-
val and determine a degree 50 Chebyshev least
square polynomial approximation of x,(t), xi(1),
and x3(t). After constructing the benchmark
problem, we do an absolute error test on (0, 4 K).
Figures 16 and 17 show the relationship between
absolute error and tolerance in log/log scale
when we use DIVPRK and DIVPBS for the
benchmark problem. Figures 18 and 19 show the
relationship between absolute error and toler-
ance in log/log scale when we use DIVPRK and
DIVPBS to solve Eq. (15) and compare to the
classical Jacobian elliptic function solution. We
notice that Figs. 16 and 17 are almost identical to
Figs. 18 and 19, respectively. The perturbation
terms are shown in Fig. 20. We plot the relation-
ship between the number of function calls and
the absolute error in Fig. 21. Thus, again,
this example indicates that our neighboring
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FIGURE 17 Absolute error vs. tolerance for the
benchmark problem (DIVPBS).
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FIGURE 18 Absolute error vs. tolerance for the

Euler equations (DIVPRK).

benchmark problem leads to essentially identical
convergence properties to using the exact solu-
tion of the original problem.

A Stiff Problem

We consider the following problem (Shampine
and Gordon, 1975) that represents a typica!l stiff
problem.

—29998x; — 39996x;
14998.5x, + 19997x,

Xy

(16)

It

Xs

where x;(0) = 1. x5(0) =
The exact solutions of Eq. (16) are as follows:

xi(t) = 7 exp(—10%) — 6 exp(—1)

(17)
x(t) = —3.5 exp(—10%) + 4.5 exp(—1).
°1  DIVPBS ,
] s
f":“ _5: /// ‘v
g ' |
— 4 - i
Z ] ' !
a | /
< 104 ) »
S P
] I
-15 T ——— - ——— |
-15 -10 -5 0

LOG,p(Tolerance)

FIGURE 19 Absolute error vs. tolerance for the
Euler equations (DIVPBS).
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FIGURE 20 Perturbation terms of the Euler equa-
tions.

The eigenvalues of the coefficient matrix are —1
and —10% Figures 22 and 23 show the solutions
over two different intervals, a region of very
rapid change followed by gradual asymptotic be-
havior. It is almost impossible to obtain a satis-
factory orthogonal function benchmark problem
that covers both regions with a reasonable num-
ber of terms. We conclude that the proposed
methodology is not adequate for such stiff prob-
lems unless piecewise approximation methods,
for example, the type introduced by Junkins et
al. (1973) are used. Stiff problems are relatively
expensive to solve and the expense depends
strongly on the tolerance (Gear, 1971; Shampine
and Gordon, 1975; Shampine and Gear, 1979).
Enright et al. (1975) provide a good collection of
stiff test problems.

Euler Equations

oesse DIVPRK I
s==ess DIVPBS

-15 -0 -5
LOG,¢(Absolute Error)

FIGURE 21 Number of function calls vs. absolute
error.
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FIGURE 22 Solution of example 5 for the rapid
change region.

SUMMARY AND CONCLUSION

The present article introduces an inverse method
for constructing exact benchmark problems for
initial value problems. This methodology gives
valuable information about the optimal tuning pa-
rameters and the accuracy of the numerical solu-
tion for a class of ordinary differential equation
problems and for a given solution code. Numeri-
cal examples indicate that a rigorous error analy-
sis is usually obtained not merely for one nominal
solution, but for a substantial neighborhood of
the nominal solution. If one wants to use the
classical Runge—Kutta method with a fixed step
size, then the codes (Lee and Junkins, 1993) pro-
vide directly useful information about the opti-
mal step size h and the associated accuracy.
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FIGURE 23 Solution of example 5 for the gradual
change region.
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More sophisticated users who are familiar with
adaptive and robust codes can also construct
similar benchmark problems; however, the Che-
byshev approximation method may have to be
replaced or modified to obtain a method not re-
stricted to uniformly spaced data. For stiff sys-
tems, special purpose approximations may be
required in lieu of the global Chebyshev approxi-
mations. The analytical expressions for the
benchmark problem and its solution can be estab-
lished using computer symbol manipulation [e.g.,
MACSYMA (1988), Mathematica, MAPLE,
etc.]. Then the user investigates the global error/
parameter relationship and compares various
codes with special case absolute standards. In
examples 3 and 4, we show the utility of this
methodology using the IMSL (1989) subroutines
DIVPRK and DIVPBS as solvers. And we inves-
tigate the absolute error/tolerance relationship
and compare DIVPRK and DIVPBS. We have
developed some basic methodologies, but there
remains a need for additional numerical experi-
ments to further evaluate the practical utility of
this approach.
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VALIDATION OF FINITE DIMENSIONAL APPROXIMATE
SOLUTIONS FOR DYNAMICS OF
DISTRIBUTED PARAMETER SYSTEMS

John L. Junkins and Sangchul Lee'

An inverse dynamics method is introduced for constructing exact special
case solutions for hybrid coordinate ordinary/partial systems of
differential equations (hybrid ODE/PDE systems), and the utility of this
method in validating numerical solution methods is explored.

INTRODUCTION: Construction of Benchma;‘k Problems for
Solution of Ordinary Differential Equations

Given a flexible multi-body dynamical system, most rigorously described by a
hybrid system of nonlinear ordinary and partial differential equations, we seek to
validate simulations of the behavior of the system by numerical methods. With
most applications of approximate solution algorithms, we must somehow evaluate
the accuracy of a given approximate solution, without knowing the true solution.
What happens if we can construct an exact forced response solution for a special case
motion near(in a sense to be established) a candidate approximate solution? This
gives us an absolute standard and promises the capability of displaying exactly the
space/time distribution of solution errors for the special-case solution and therefore
suggesting remedies, if needed, to improve the discretization-based solution process.

The idea is easily introduced by first considering the initial value problem for
nonlinear ordinary differential equations.! In general, we do not know the true
solution and the numerical methods give us an approximate solution. The most
common way of assessing the true error of a numerical solution is to reduce the
tolerance, integrate again, and compare the results.2®> While more sophisticated
error analyses can be conducted, there is no general way to absolutely guarantee
the final accuracy of the solutions. While this does not preclude obtaining practical
solutions for most applications, it remains very difficult to answer subtle questions.
Actually the theory of differential equation solvers is far from complete, so that
the understanding of a given code’s performance invariably requires a study of
experimental results. Hull, et al* and Krogh® provided two outstanding collections
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of test problems for this purpose, for the case of ordinary differential equations.
These test problems have been used in the development and testing of the codes
and can be regarded as standard benchmark problems for initial value problem
solvers.

Whenever we know the true solution of a test problem we can investigate
the relationship between the true, or global error and parameters of a given
code(e.g., step size, local error tolerance, order, etc.). Of course, only for a small
minority of interesting problems can the initial value problem be solved analytically.
We introduce here an inverse method which algebraicly constructs a continuous
neighbor of a given numerical approximate solution; the neighboring continuous
motion does in fact exactly satisfy the differential equations(with a known small
forcing function) and serves as an excellent benchmark problem. The remaining and
most critical question is: How useful is the convergence and accuracy information
obtained for the benchmark problem, as regards drawing conclusions for the original
problem? It is certainly true that there are open questions on this issue, however, by
constructing a family of neighboring benchmark problems, it is usually possible to
judge the size of the neighborhood in which the convergence and accuracy properties
are relatively invariant with respect to the perturbation, and thereby gain the

practical insight needed to proceed with confidence in a solution and associated
€rror measures.

Now, we propose a method to construct a benchmark problem which is a closely
neighboring trajectory of a given approximate solution of the original problem.
As will be evident, the benchmark problem motion is constructed algebraicly so
that it satisfies exactly the differential equation but with a known, usually small,
time varying forcing function. We can then investigate the global error /parameter
relationship of the benchmark problem with the true solution in hand. Under
the assumption that the original problem is well-posed with respect to small
perturbations, we have valuable information about the optimal parameters and
the accuracy of the numerical solution. Through study of a family of neighboring
benchmark problems, we can directly establish insight on the “stability” of this
error analysis.

Initially, we restrict attention to nonlinear ordinary differential equation(ODE)
systems, we subsequently broaden the discussion and examples to consider hybrid
differential equation systems. Here we introduce one way for constructing the exact

benchmark problem. First we consider the following initial value problem for a
second order ODE system:

i = f(z,2,t), z(to) = zo, z(to) = %o over tg <t <ty )
1
f: RN xRN xR— RN

Here we consider the case where z is a scalar(i.e., N=1). The following approach
can be easily generalized for the vector case. A candidate discrete approximate
solution can be obtained from the original second order differential equation (1)
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using a numerical method. To establish a continuous, differentiable motion near a
given approximate solution, we use a least square approximation based upon the
discrete version of the Chebyshev polynomials; this polynomial approximation can
be established directly from the discrete approximate solution.b:" We first consider
the least square process. There are n data points such as zy = g(t1), T2 = g(t2),
eor, Tn = g(tn) where t; are the equally spaced values of the independent
variable(hy = (ti+1 — t;) = constant).

A linear transformation to nondimensionalize the independent variable should
be made to use the discrete version of the Chebyshev polynomials.

- t—t

where h; is the constant increment of t.

s = g(t) = G(D)

From n data points, the least square polynomial approximation function G can be
established by a linear combination of m basis functions; we use the discrete version
of the Chebyshev polynomials’ with weight function w(t) = 1 as follows:

G =) aTi(d)

=1

where m < n and the Ti(f) are the discretely orthogonal Chebyshev polynomials.
The Chebyshev polynomials are defined as follows:
If um =m (m=0,1,2,---,N) and w(u) =1, then

m=0

with the recurrence relationships:

To(’l&) =1
T](’!L) =1- -3—3—

(n+1)(N = n)Tnya(u) = (2n + 1)(N — 2u)Tn(u) = (N + n + 1)Tn-1(v)

Using the discrete orthogonality property of the Chebyshev polynomials’, coefficient
a; can be obtained as follows:

E?:l zq TJ(t_l)
Sy T3t Ti(t)

a; =

2091

25



where 1 < j < m. Since no matrix inverseis required, and owing to the completeness
of these polynomials, it is well known that most smooth functions can usually be
approximated accurately using a modest degree (n).

We can find g(t) from G(f), since g(t) = G((t)). Using this least square
approximation, we can find a continuous, differentiable, analytical solution z(t)
which interpolates or lies very near the given n discrete numerical Z; approximate
solutions of Eq.(1). Of course this analytical expression z4(t) does not satisfy
exactly the Eq.(1). However, substituting z3(t), Z3(t), £s() into the equation
e(t) = &(t) — f(=(t),2(t),t) allows us to determine an analytical function for the
perturbation term e(t) which appears in the following differential equation:

() = f(z(t),5(t), 1) + e(t) = F(=,3,1) (2)

Since f(z(t),2(t),t) is given and e(t) is an available algebraic function, F(z,z,t) is
available. Now z;(t) satisfies Eq.(2) exactly, and finally, this known function z(t)
is a neighbor of the original numerical solution {Zi, £z, -+, Za}. By algebraic
construction the function e(t) = #,(t) — f(zs(t),Zs(t),t) is known analytically
and therefore we know this small forcing function at all ¢, and obviously, we
know “how small” e(t) is. This function is programmed and Eq.(2) can then be
solved by numerical methods and the results can be compared to the known exact
z3(t),&5(t). The above mathematical procedure can be performed successfully using
computer symbol manipulation®, this is especially important for the generalizations
to consider hybrid differential equations. Now Eq.(2) is a benchmark problem
of Eq.(1) and z4(t), &5(t), &s(t) satisfy Eq.(2) exactly. We obviously want the
perturbation function e(t) to be as small as possible, i.e., the benchmark problem

is not only a near neighbor of the original discrete solution, but it also very nearly
satisfies the given differential equations.

The previous least square approximation method has often been found to give
poor results near the ends of the interval. This poor fit may cause a relatively large
e(t) near the initial and final times. To avoid this problem we integrate Eq.(1)
over the enlarged interval tg— <t < t5y (where to— < 1o, ty4 > ts) and use these
numerical results as generators for analytical solutions over the original interval
(to < t < ty). Experience indicates that a 20% “enlargement” {(tf+ — to~) >
1.2(t; — o)} is almost always sufficient to support good interpolation over the
original interval (fo < t < tg). If the measure of e(t) is judged too large then we
increase the number of Chebyshev polynomials m to reduce e(t) over the whole
interval, or “start over” by attempting to find a better approximate numerical
solution to initiate the process. Figures 1 and 2 provide logical flow charts showing
construction of a benchmark problem and associated convergence study.

Now we demonstrate the idea using a simple nonstiff problem. We use the
Runge-Kutta 4th order method with fixed step size, therefore we have the most
common case that the integration control parameter is simply the step size h. The




relationship between step size h and the global, or true errors gives us the infomation
about the critical value for h and the accuracy of the numerical solution. We
consider the following nonlinear, nonautonomous second order differential equation.

i=—-z-—01(1+2%)+ 0.1z3 + sin3t (3)

where z(0) = 1 and £(0) = 0, and we seek the solution over the interval 0 < ¢ < 10.
We convert Eq.(3) to a first order system as follows:

T = T2

: 2 3 (4)
£q = —z1 — 0.1(1 + z?)zy + 0.1z} + sin3t

where z,(0) = 1 and z2(0) = 0.

First, we solve Eqs.(4) using the Runge-Kutta 4th order method to evaluate the
candidate discrete approximate solution. Here we use 121 data points over the 20%
enlarged time interval —1 < ¢ < 11. Second, we establish a continuous, differen-
tiable, analytical expression for interpolating z1,(t) from the discrete approximate
solution &;(t). We use a degree 30 Chebyshev polynomial approximation for the
least square fitting. Finally we substitute z1,(t), Z1,(t), #1,(t) into Eq.(3) and
symbolically determine the function e(t) which appears in the following equation.

5= —z—0.1(1 +2%)z +0.1z> +sin3t + e (5)

To use the Runge-Kutta method, Eq.(5) can be converted to a first order system
as follows:
Ty = T3

6
Ty = —Ty — 0.1(1 + mz)zg + 0.1a:g + smm3t+e ( )

Now, Eq.(5) serves as a benchmark problem for Eq.(3), because we know
functions z3(t) and e(t) which satisfy Eq.(5) exactly. Upon solving Eqs.(6)
numerically with various values chosen for h, and using the benchmark initial
state as initial conditions {z1(0) = z4(0), z2(0) = #5(0)}, we can establish the
relationship between step size and global error. When we use the pointwise error
in the root mean square sense, we are led to the results in Fig.3 which shows the
global error/step size relationship on a log/log scale. The rate of convergence on
a log/log scale is 4 in this problem; this coincides with the fact that an rth order
method should have a global error of O(h™) in the absence of arithmetic errors.’
The critical value for step size is about 0.001; if A decreased below 0.001, then the

results deteriorate due to the round-off error. The exact solution of this benchmark
problem and simulation errors are shown in Figs.5 and 6. To study the robustness of

the convergence characteristics of Fig.3, we introduce relatively large perturbations
in the initial conditions and the nonautonomous term in the differential equation
as follows:
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%= —z —0.1(1 +z%)% +0.12° + 1.25in3¢ (7)

where z(0) = 1.2 and £(0) = 0.2 over the interval 0 <t < 10.

After using the same procedure to vary the step size and therefrom we
obtain the global error/step size relationship shown in Fig.4. Notice that Fig.3
and Fig.4 are almost identical. In other words, both the critical value h and
the associated accuracy are essentially unchanged, even though we introduced
large(20%) perturbations in the initial conditions and in the forcing term of the
differential equation. Obviously these results are problem dependent, but a similar
process will provide the needed insight for other problems.

Now we apply this idea to an idealized three-body distributed parameter
system. The main difference is that there are two independent variables for space
and time. Therefore, the least square approximation method must be generalized
to deal with two independent variables. In order to obtain an approximate
candidate discrete solution, we use linear quadratic regulator(LQR) to design
control forces and we use the finite element approach for space discretization. From
this approximate solution, we construct a smooth, differentiable, analytical solution
which is physically meaningful. We investigate the exact space/time distribution
of errors of the numerical simulation using Newmark method with finite element
modeling.

A THREE-BODY DISTRIBUTED PARAMETER SYSTEM

Now we demonstrate the idea on an idealized three-body distributed parameter
system. With reference to Fig.7, we consider a rigid hub with a cantilevered flexible
appendage which has a finite tip mass. Table 1 summarizes the configuration
parameters of this flexible structure.

Table 1 Configuration Parameters of a Three-Body Problem

PARAMETER SYMBOL VALUE

Hub radius T 1 ft

Rotary inertia of hub Jh 8slug-ft2

Mass density of beam p 0.0271875 slug/ft

Elastic modulus of beam E 0.1584x10'° 1b/ft?
Beam length L 4.0 ft
Moment of inertia of beam I 0.4709502797x 1077 ft*
Tip mass me 0.156941 slug

Rotary inertia of tip mass Ji 0.0018 slug-ft?




The appendage is considered to be a uniform flexible beam and we make
the Euler-Bernoulli assumptions of negligible shear deformation and negligible
distributed rotatory inertia. The beam is cantilevered rigidly to the hub. Motion is

restricted to the horizontal plane and we neglect the velocity component —y0, that
is perpendicular to the y direction. The control system is assumed to generate a
torque u acting upon the hub, a torque uyp and a force fi;, acting upon the tip

mass, and a distributed force density f acting upon the appendage. We assume
small elastic motions viewed from the hub-fixed rotating reference frame. Overdots
denote derivatives with respect to time and primes denote derivatives with respect
to the spatial position.

The kinetic and potential energies of this hybrid system are as follows:

L
oT = J,6? +/0 [p{g+(z+7)0}* do+m{g(L) + (r+ L)8Y + Je{6+4'(L)}(8)

L

2v = [ {EI)) s (9)
0
The nonconservative virtual work of this system is given by
L
§We = {u + / f(z) (= +7)dz + (L +7) frip + usip} 60
L ' (10)
+ [ f@yda + fipby(D) + by (D)
0

Using an explicit version of the classical Lagrange’s equation for hybrid
coordinate distributed parameter systems!?, the governing differential equations
and the boundary conditions are obtained efficiently. '

L
Tnb+ / p(z+7)(§ + (z+7)8) dz+mt<L+r>(<L+r)é+iJ(L>) +J(6+§'(L))

L ~
—ut /0 f(2)(@ + 1) do + (L + 1) fuip + veip (11)
p{ii+ (z +7)8} + EIy" = f (12)
EI%}‘; me{(L 4+ )+ G(L)} + fuip =0 (13)
L
8 0L

Notice that if we knew an explicit, differentiable solution for the motion
variables {y(z,t),8(t)}, then the Egs.(11-14) can be solved directly and ex-
actly for the four corresponding time and space varying forces and moments
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{u(t),f(:c,t),ut,-p(t),fﬁp(t)} thus yielding the desired inverse solution. Since we
are interested in physically meaningful problems, we do not wish to randomly guess
the solution {y(z,t),6(t)}. Motivated by the above results for ODEs, we will con-
struct an exact solution which is a near neighbor of a given approximate solution.
First we consider a conventional path to construct the approximate solution.

FINITE ELEMENT APPROACH

Using the FEM, the partial differential equations of the motion are transformed
into an approximate set -of second-order differential equations in terms of the
displacements, velocities, and accelerations of the finite element coordinates, and
the external forcing functions. Several finite element models for a flexible arm
are presented in Refs.[11] and [12]. In this section, we will develop a finite element
model for a hub with an appendage and a tip mass by using the extended Hamilton’s
principle that provides a variational weak form for the finite element model. It is
significant to note that we carefully introduce the finite element approximations in
such a way that large hub rotations are admitted; the FEM represents small elastic
displacements with respect to hub-fixed axis.

The application of the extended Hamilton’s principle yields

t2
/ (8T — 8V + 6Wp)dt =0, §0=6y=0 at t=t;t,  (15)
ty

Substituting Eqs.(8-10) into Eq.(15) and integrating by parts gives

[ oo e mr(E0)s(22) )
+ {‘/“)L p(fc + 'r)(ﬁ + (a: +'I‘)5)dm + Jhé +mt(L + 'r)('y(L) + (L + "')0)

+Jt(gg'

+ {muH(D) + (B +7)8) = fupy53(L)
% | L6 —uu (% =
(] +0)-uals(Z] )] a0
(16)

oz
The displacement y(z,t) can be discretized using a finite element expansion
13,14

+ 0) - (u + /;L @)z +r)de + (L +7)fup +'u.tip)}59

L

L

4

y(z,t) = 3 98 ()i 2) (17)

i=1




where 149 (%) (A2 w{?) are transverse deflection and rotation at the left (right)
end of the element, and 1,b§e) are the Hermite cubic polynomial shape functions
which satisfy the conditions for the admissibility and that are defined over the

finite element.
The acceleration and curvature are expressed as follows:

o) = LA, A= Z (#0009

=1

The following cubic functions are adopted as the shape functions for i-th finite

element!4

by =1—382 + 28}, ¢ = h¥; — 2hZ] + ha}

19
$s =382 — 28}, 4= —h3} + hal, z; = (¢ —2i)/h "

where z; is the distance from the root of the appendage to the left end of the i-
th finite element, and h is the length of the finite element. These are the most
commonly used shape functions for one-dimensional beam elements.

Substitution of Eqs.(17-19) into Eq.(16) and carrying out the spatial integra-

tions yield the global mass, stiffness and forcing matrices. After some algebra, the
assembled matrix differential equation is as follows:

Jn + Mg Mg, é + 0 0_ 6
Mg M,, v 0 K, v

[ X ({(,Lf(w)(mw;:)dz o ]
I f(2)d5" (v)dz + J; F(2)? (2)dz
1 (r+L) 1 o Y e 2
0 U "o { u f&f(w)«bi"(w)dwfh"f(m) ) (2)de
= : ‘ : ftip}
0 1 0 Utip f(: ;)): f(fc)i.b(n_l)(:c d:v + f(n 1)k f(:z:)'c,bgn)(m)d:c
0 0 1 : I 1)hf(-'c)zb("’(rc)dac
i JEE n F(@)87 (2)do

(20)
where v is the coordinate which consists of the transverse deflection and rotation
at each node of the appendage, and the matrix elements of Eq. (20) are presented
in the Appendix.

2097

31




CONSTRUCTION OF A CANDIDATE DISCRETE SOLUTION

We can find a physically meaningful approximate solution by using any given
approximate forward solution process. For simplicity, we assume that only the hub
torque u(t) is non zero. Then Eq.(20) can be written in a linear second order matrix
form as follows:

M5 + Kx = m “ (21)

{2}

We design a typical control law using the linear quadratic regulator(LQR), and

modal coordinates are used to design controller. To perform the modal coordinate
t15

where

transformation, the following open-loop eigenvalue problem should be solved firs
K¢ . =M¢, i=1,2,---,n (22)

with the normalization equation

T M¢ =1 i=1,2,-+,n (23)
We introduce the modal matrix
@Z[él’éZ’“".(én] (24)
The general modal coordinate transformation is then
x(t) = 2q(t) (25)

where 7(t) is the n x 1 vector of modal coordinates.
The transformed equation of motion becomes

Mij + Kn = Du (26)

where

0

M=8TM®=1I, K=38TK®=diag(0,w?,w?, --,w2_;), D=2 H

Note that diagonal zero in K corresponds to the rigid body mode. For control
applications the system dynamics are usually modeled as first order state space
differential equations. We introduce the “2n” dimensional modal state vector

=) <27>




Eq.(26) can be written as the first order system

3 = Az + Bu (28)

SPHIT

We adopted the following performance index for the LQR control design:

where

J = /m(zTQz + uT Ru)dt (29)
0

with
Q 0 ~
Q"{o In]’ k=1

where Q = diag(g,w?, -, wi_,).

The above performance index is an energy type, since the first term and second
term in the performance index corresponds to the state energy and the control
energy respectively.

By solving the Riccati equation!®, the optimal feedback control is obtained

u=—gz (30)

Now we can solve the initial value problem using a time discretization pro-
cess(e.g. Runge-Kutta) and through Eqs.(17,25,30) we obtain g(zi,ti), 6(t;) and
(t;), at discrete pointsin space and time. The approximate motion {§(z:,1:), 6(t:)}
corresponds to the system response to a hub torque designed to maneuver the sys-
tem and arrest vibration.

CONSTRUCTION OF A BENCHMARK PROBLEM

We want to construct a continuous, differentiable, analytical solution that has
physical meaning. A candidate discrete approximate solution for the hybrid system
can be obtained using any given approximate forward solution process and a given
controller. This approximate solution can be used as a generator for a nearby
smooth space/time motion for which we can determine the exact forces(required to
be consistent with this prescribed motion and the exact equations of motion). Least
square approximation associated with using the discrete version of the Chebyshev
polynomials can be invoked to obtain the smooth motion f(z,y) solution from
the discrete solution. While we invoke a least square approximation to construct
the smooth f(z,y) from an already approximate discrete solution, we subsequently
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determine the modified forces to be exactly consistent with this motion f(z,y). We
first consider the least square process.

There are n' x m' discrete data points such as

zZn = f(whyx), 212 = f(zlvyZ)a Tty Zimt = f(mlaym')

221 = f(2321yl), 292 = f(232,y2), ey Z2mt = f(z21ym')

Znl = f(fcn',yl), Zpt2 = f(mn',yz), tery Znim! = f(xn',ym')
where z;, y; are equally spaced independent variables.

How can we reliably compute a continuous, differentiable, analytical function
f from the data points in the least square sense? Analogous to the ODE case, we
elect to make use of discrete orthogonality. We nondimensionalize (z,y) using

Be) =T W)=

where h;, hy are the increments of z and y respectively.

z = f(zvy) = F(i,ﬁ)

From two-dimensional n’ x m' data points, the function F' can be approximated
by p X q two-dimensional basis functions that come from the discrete version of the
Chebyshev polynomials [weight function w(z) = 1] as follows:

P g

F(z,9)= Y > biTi(2)T5(9)

i=1 j=1
where p < n', ¢ < m' and T.(*) is the univariate Chebyshev polynomial in the
discrete range.

We use the previous definition of Chebyshev polynomials and the recurrence
relation. Using discrete orthogonality properties of Chebyshev polynomials, the
typical coefficient b, can be obtained as follows:

_ e ;'n=1 zij Tr(%:) To(3;)
iy Liey Tr(#:) Ta(75) Tr(2:) To(35)
where 1 <r <p, 1 <s<q.
We can find f(z,y) from F(z,%), since f(z,y) = F(Z(z),7(y))-

Using the previous method associated with the Chebyshev polynomials, we
interpolate a smooth differentiable function ys(z,t) as a two-variable orthogonal

brs

function expansion which passes near the §(z;,t;) points. Similary, we can interpo-

late a smooth differentiable function 8,(t) from 6(t;) data points. Since y;(z,t) and




8,(t) are smooth, differentiable functions, we can force them to be exact solutions
of our dynamical model by simply substituting ys(z,t), 05(t) and their space/time
derivatives into Eqs.(11-14) and solving the four equations analytically for four new

forces {u(t), f(z,t), wuip(t), frip(t)} which satisfy these equations exactly. Com-
puter symbol manipulation makes this process possible.

SIMULATED RESULTS

First we find a candidate discrete solution for the enlarged time interval
(-1 < t < 2) with initial conditions 6(—1) = 0.1rad and y(z,—1) = 0 for all z. We
use LQR to design control force @(t) and use the finite element approach for space
discretization. Here we use 1 for g of Eq.(29) and use the configuration parameters
as shown Table 1. Then we construct a benchmark problem for time interval
(0 < t < 2). Figures 8-13 show yp(z,t), 0s(t), u(t), f(z,1), usip(t), and feip(t)
which satisfy Eqgs.(11-14) exactly. Note that even though we use the enlarged time
interval and have good interpolations for 6;(t) and ys(=,t) near the boundary, there
exists relatively large error for control forces, near the boundary, compared to the
nonlinear ODE cases. This is due to the fact that we have twoindependent variables,
time and space, and have coupling terms which are time and space derivatives of
ys(z,t) in the evaluation of control forces. In contrast to enlarging the time interval
for ODE problems, it is neither physically nor mathematically meaningful to enlarge
the spatial domain. As will be evident, thisis a minor problem, and does not prevent
us from establishing “exact” benchmark problems.

Finite element approach gives us Eq.(20) and for simulation we use step-
by-step solution using Newmark integration method. Given initial conditions
{y(z,0) = ys(z,0), 6(0) = 6;(0)} and force functions {u(t), f(z,1), veip(t), frp(t)}s
the approximate simulation of this structure’s dynamics {ys(z,t), 05(t)} can pro-
ceed. Figure 14 shows the space/time error distribution ey(z,t) = ys(z,t) — ys(2, 1)
when we use 20 finite elements and 0.002 sec. for step size.

Second we find a candidate solution for the enlarged time interval (0 < ¢ < 0.1).

Initial condition for 8 is 0.1rad and the third natural mode of this flexible structure
is used for y(z,0). We use LQR to design control force i(t) and FEM is used for

sapce discretization. Here we use 100 for ¢ of Eq.(29) and use the configuration
parameters as shown Table 1 except m; and J; (m;=0.256941, J4=0.0028). Then
we construct a benchmark problem for time interval (0 < ¢ < 0.08), i.e., we have
new set yp(z,t), 05(t), and {u(t), f(=,1), wtip(t), frip(t)} which satisfy Eqs.(11-14)
exactly.

Now we can investigate the convergence errors in a family of approximate
solutions with special case absolute standards. When we use the Newmark
integration method with finite element modeling, the convergence and accuracy
behavior is studied as a function of the number of finite elements and the integration
step size. Figure 15 shows the error norm |leg|| and ||ey|| for various mesh sizes for

2101

35




a fixed integration step size on a log/log scale. Figure 16 shows the error norm
lles|| and |ley|| for various integration step sizes for a fixed number of finite elements
on a log/log scale. The error norm distribution of # and y is shown in Figs.17, 18
respectively, as a function of DT(time step size) and H(mesh size).

Here we introduce the following definitions for the supmetric error.

llea(®)llL2co,1y = {/OT eo(t)2dt}%

ley (2, )13 o,mi2) = { /OT /OL o (ol dt}-;-

-

where eg(t) = 8,(t) — 05(t).
The relative errors are defined as follows:
RE, = llea(t)ll 20, 1) . RE, = lley(z, )l 20,7527
16(t)llL2 0, 1) lly(z, t) L2 (0, 752)

We observe that the rate of convergenceis 2 in At(decrease DT to reduce error
measure) and 4 in h(decrease H to reduce error measure) from Figs.15 and 16, except
for the small( At, h) region where arithmetic errors dominate and provide computer
limitations to accuracy. It is this latter insight that is essentially impossible to
obtain by pre-existing methods, but is easily established by the methods of this
paper. We should be careful in saying that adjusting h (to achieve accuracy) is less
expensive than adjusting At, because the rate of convergence of 4 in h and the rate
of convergence of 2 in At does not guarantee this fact. Each approach to improving
accuracy results in different amount of computational load, which depends on the
specific program. From Figs.15-18, we can also notice that if H is too crude then
At reduction does not improve the solution and if DT is too big then h reduction
does not improve the solution. The numerical results indicate that the minimum
value of REg is 0.7 x 10~7 (when H=0.2 and DT=0.00002) and the minimum value
of RE, is 0.3 x 103 (when H=0.4 and DT=0.00005). We know of no method that
could give this insight before the introduction of the present method.

We construct a neighboring benchmark problem to investigate the robustness of
the convergence characteristics of Figs.15-18. To construct a neighboring benchmark
problem, first we find a candidate discrete solution with the following initial
condition and forcing function @(t). Comparing to the previous case, we make a 10%
increase of the initial condition y(z,0) and arbitrarily add a sinusoidal perturbation
term 0.41865in(27t/0.08) to the previous hub control i(t) for a new perturbed hub
control. The error norm distributions of the perturbed case are almost identical
to the previous problem. So we can conclude that the convergence and accuracy




properties of this approximate solution process are indeed relatively invariant in the
presence of these finite perturbations, in this case.

SUMMARY AND CONCLUSION

The present paper introduces an inverse dynamic method for constructing exact
special case solutions for hybrid ODE/PDE systems. A multi-variable orthogonal
function expansion method and computer symbol manipulation are successfully used
for this process. The hybrid ODE/PDE systems with exact solutions can serve as a
benchmark problem to validate approximate solution methods. This methodology
makes it possible for one to rigorously determine exact solution errors and to study
the convergence and accuracy behavior as a function of tuning parameters for
a class of ODE/PDE systems for which the initial value problem is not exactly
solvable. Numerical examples indicate that a rigorous error analysis is obtained not
merely for one nominal solution, but for a substantial neighborhood of the nominal
solution. By constructing a family of neighboring benchmark problems, one can
obtain valuable information about the convergence and accuracy properties that
are relatively invariant with respect to perturbations within a known bound.
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APPENDIX
Submatrix Elements of Finite Element Method

The local mass and stiffness matrices of the i-th element of the appendage is defined
as follows:

o[ oo
M{) = 21 22 23| » KM= [0 Kj Kis

i 1 1 1 i
31 32 33 0 K32 K33

where

; h
Mj, = %{(‘Bi +r2 H(zitr+h)(mitr) H(zitr+ R)?}
Mi, = [M},)T = ph[g5h + 3(zi +7) +h? + fph(zi + r)]

iy = Miy|T = ph[Sh+ 3z +7)  — g5h" = Fh(zi+ )]
22 7 490 |22k 4R |’ 23 = W82l T 459 | 13k 3R
; _ ph | 156 —22h

337 490 | —22h  4R?

i EI |12 6h : ;v EI[-12 6h

22 = 713— [ﬁh 4h2} , Kiz= [K32] = 33_ {—Gh 2h2]

; _EI[12 —6h

37 73 | —6h 4h?




where z; is the distance from the root of the appendage to the left end of the 1-th
finite element, r is the radius of the hub, and h is the length of the finite element.
The matrix due to the tip mass is defined as follows:

Mi, M
M, = | 1 12]
= o

where

M, =Je+ my(r + L)2
M, = My)T = [me(r + 1) i)

t_mg 0t
v, = 9]

Now, the submatrices in Eq.(20) can be defined as follows:

N
Moo = ZML +Mj,

=1
Mg, = [Ml; + M2, M +M3, Mg +Mi, - MY+ MY, MY+ M)
M3, + M3, M3, 1
M2, M, +Mj, Mi
M3, M3; + M3, M3,
Muu =
L W M g MY
Mj; 33 1+ M3l
(K3, ‘*;K§2 2K§3 . \ '\
K3, K3; + K3, K3, ,
K3, K3; + K3, Kis
K,,=
KN-1 KN ; KY K%
L K32 K33

where N is the number of finite elements.
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Fig. 15 Error norms for various mesh sizes for a fixed integration step size
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LINEAR QUADRATIC REGULATOR PROBLEM

AlAA-94-3754-CP

WITH INEQUALITY CONTROL CONSTRAINTS
FOR FLEXIBLE SPACE STRUCTURES

Sangchul Lee® and John L. Junkins!
Tezas ASM Universily,College Station, TX 77843

Abstract

We consider the simultaneous slewing and vibration
suppression control problem of an idealized structural
model which has a rigid hub with two cantilevered flexi-
ble appendages and finite tip masses. The finite element
method(FEM) is used to obtain linear finite dimen-
sional equations of motion for the model. In the linear
quadratic regulator(LQR) problem, a simple method is
introduced to provide a physically meaningful perfor-
mance index for space structure models. This method
gives us a mathematically minor but physically impor-
tant modification of the usual energy type performance
index. A numerical procedure to solve a time-variant
LOR problem with inequality control constraints is pre-
sented using the method of particular solutions.

Introduction

The problem of simultaneous slewing and vibration
suppression of large flexible space structures has been
the focus of intense research!~%. Since Large Space
Structures(LSS) are mechanically flexible systems, they
are most generally described as hybrid coordinate dy-
namical systems. Their motion is described by a cou-
pled system of ordinary and partial differential equa-
tions. The corresponding nonlinear integro-differential
equation of motion are usually linearized, discretized in
space, and truncated to a finite number of modes. The
assumed mode method and the FEM are widely used
for obtaining discretized linear equation of motion for
large flexible structures.

Several approaches to associated control of LSS have
been investigated. The linear quadratic regulator and
associated tracking problems have been treated success-
fully and represent an important class of optimal con-
trol application. In the LQR problem, the choice of
performance index is very important and problem de-

* Graduate Student, Department of Aerospace Engi-
neering. Student Member ATAA.

{ Eppright Chair Professor, Department of Aerospace
Engineering. Fellow AIAA and AAS.

Copyright ©1994 by John L. Junkins. Published by the
American Institute of Aeronautics ans Astronautics,
Inc. with permission.
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pendent task. Usually LQR problems are considered
without any bounds for states and controls. If there are
inequality constraints on the controls, however, then
Pontryagin’s minimum principle could be applied to
find the necessary conditions for optimality. Unfor-
tunately, the resulting equations from the optimality
conditions give us nonlinear differential equations even
though the original system of equations is linear®. For
this reason, we can not determine controls analytically.
Rather, we must attempt to find the solutions by an
iterative numerical procedure.

In this paper, we consider the simultaneous slewing
and vibration suppression control problem of a rigid hub
with two cantilevered flexible appendages which have fi-
nite tip masses. The FEM is used to obtain linear finite
dimensional equations of motion for the flexible space
structure model. We introduce a simple method which
provides a physically meaningful performance index for
space structure models. This method gives us a mathe-
matically minor but physically important modification
of the usual energy type performance index. A numer-
ical procedure to solve a time-variant LQR problem
with inequality control constraints is presented using
the method of particular solutions”8. We also present
simulated results to explore the utility of this method.

Finite Element Modeling

Using the FEM, the partial differential equations
of the motion are transformed into an approximate
set of second-order differential equations in terms of
the displacements, velocities, and accelerations of the
finite element coordinates, and the external forcing
functions. With reference to Fig.l, we consider a
rigid hub with two cantilevered flexible appendages
which have finite tip masses. Table 1 summarizes
the configuration parameters of this flexible structure.
The appendage is considered to be a uniform flexible
beam and we make the Euler-Bernoulli assumptions of
negligible shear deformation and negligible distributed
rotatory inertia. The beam is cantilevered rigidly to
the hub. Motion is restricted to the horizontal plane
and we neglect the velocity component —y0, that is
perpendicular to the y direction. Several finite element
models for a flexible arm are presented in Refs.[9]
and [10]. In this section, we present a finite element




model for the model by using the extended Hamilton’s
principle that provides 2 variational weak form for
the finite element model. It is significant to note
that we introduce the finite element approximations
in such a way (co-rotational coordinates) that large
hub rotations are admitted; the FEM represents small
elastic displacements with respect to hub-fixed axis.

Fig.1 A five-body hybrid coordinate system

Table 1 Configuration Parameters

PARAMETER SYMBOL VALUE
Hub radius T 11t
Rotary inertia of hub Jn 8 slug-ft2
Mass density of beam P 0.0271875 slug/ft
Elastic modulus of beam E 0.1584x 10'° 1b/ft?
Beam length L 4.0 ft
Moment of inertia of beam I 0.4709503x 107 ft*
Tip mass m 0.156941 slug
Rotary inertia of tip mass Je 0.0018 slug-ft?

The application of the extended Hamilton’s principle
yields

t3
§T — 6V + 6Wo)dt =0
[f ) W

§6 =by=0 at t=1,t

The displacement y(z,t) can be discretized using &

finite element expansion'!?

4

y(z,t) = S @ (0) 2)

i=l

1 ,ugc) (ugc),ugc)) are transverse deflection and
cotation at the left (right) end of the element, and

where v{*)

\bge)(z) are the Hermite cubic polynomial shape func-
tions, defined over the local element, which satisfy the
conditions for admissibility.

Specifically, the following cubic functions are
adopted as the shape functions for the i-th finite
element!?

$y=1-382+28, P2 =h& — 2hE} + R3]
by =352 — 28},  $a=—hEl +hI} (3)
ii=(z—z)/h

where z; is the distance from the root of the appendage
to the left end of the i-th finite element, and h is
the length of the finite element. These are the most
commonly used shape functions for one-dimensional
beam elements.

As a consequence of the space/time separation implicit
in Eq.(2), the acceleration and curvature are expressed
as follows:

i(z,0) = #7770

e 0
Yy - e e
S ()

i=1

After some algebra, the assembled matrix differen-
tial equation is as follows:

Jn +2Mee 2Me, 8 +10 0 6
aM,s  2M,.) \Z 0 2K.,.1 v

Il
o
o N

—
2
s 8
3
!
~
&)
S

where v is the coordinate which consists of the trans-
verse deflections and rotations at each node of the ap-
pendage, and we assume symmetric deformations of the
appendages. The matrix elements of Eq.(5) are pre-
sented in Ref.{13]. The control system is assumed to
generate a torque u acting upon the hub and a torque
Ueip acting upon the tip mass.

LQR with Inequality Control Constraints

We introduce a method to find 2 physically mean-
ingful performance index. First Eq.(5) can be written
in a linear second order matrix form as follows:

{ v } where x:{e}
Utip v

(6)
Modal coordinates are used to design the controller.
To petform the modal coordinate transformation®?,

0 2
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the following open-loop eigenvalue problem should be
solved first

Kél.=z\,~M2‘. 1i=1,2,--,n )
with the normalization equation
$T Mg, =1 i=1,2,--,n (8)

We introduce the modal matrix

q):[jéliézr""?_n] (9)
The general modal coordinate transformation is then
x(t) = &n(t) (10)

where 7(t) is the = x 1 vector of modal coordinates.
The transformed equation of motion becomes

Mi+ Kn=Du (11)
wherz

M=9¢TME=1I,
E=9TKe® = diag(O,w%,w%,---,w2 )

n-1
1 2
D =97 O 0
0 2

Note that diagonal zero in K corresponds to the rigid
body mode. For control applications the system dy-
namics are usually modeled as first order state space
differential equations. We introduce the “2n” dimen-
sionel modal state vector z = {n 7}, then Eq.(11) can
be written as the first order system

z = Az + Bu (12)

where

=% 5] 2= 3]

Now the kinetic energy and potential energy are as
follows:

1. . 1
T=§xTMx, V=~‘-2-xTKx (13)
Usually we include the position feedback control-
induced potential energy term 1 kg6® since we expect

the control to drive 8 to zero. We introduce a new

weighting matrix Q in the performance index J as
follows:

ty
J = _/ (a.licTM:'c-}—aszKx+kg@2 +uTRu)dt
0

1 [
=5 / (zTQz + uT Ru) dt
0

(14)

where

_[a;8TK® O . [ke 0
Q”[ 0 allu]’ K‘[o 2KV,,]

Note that the usual energy type performance index
adopts diag(q,w?,w3,...,w3_,) instead of 3TK® as
the upper left submatrix of Q.

We assume that the control is constrained in mag-
nitude by the relation

|"-j(t)lS 1 1=42,---,m (15)
Note that the B matrix of Eq.(12) and the R matrix
of Eq.{14) can be defined to obsorb the normalization
uj, .. to allow the normalized magnitude of u;(t) to
have a unity saturation limit, without restriction.

The Pontryagin’s minimum principle consists of the
state and costate equations and the optimality condi-
tion as follows:

z° = Az + Bu’
p"=-Qz" — ATp’
H(z",u",p-,t) < H(z",u,p, t) for all admissible u

(16)

A

where H is the Hamiltonian function.

The solution of the open-loop problem which rep-
resented by Eqs.(12,14,15) must satisfy the following
nonlinear two point boundary value problem(TPBVP)
derived from Pontryagin’s minimum principle®. The
detail proof of Eq.(17) is in the Appendix.

3* = Az* — BSAT(R™'BTp")
p~=-Qz — ATp"

(17)
where p is the costate vector and sat(y;) is defined that
sat(y;) = w if |yl < 1 and sat(y;) = sgn(w) if
lyi] > 1, and SATY() is & similar vector valued function.

When the initial condition of z*(¢) and the terminal
condition of p(t) are assigned as z°(0) = zo and
p*(t;) = hz"(t;), the method of particular solutions
associated with a quasi-linearization method gives us
the open loop optimal solution.

Method of Particular Selutions

A general technique for solving nonlinear TPBVPs
was presented in (7,8]. The method of particular solu-
tions and an associated quasi-linearization method are
summarized and then applied to LQR problems with
inequality control constraints.

First consider the linear differential system

¢=Fv+Dl)  0<t<ty  (18)




with the boundary conditions
Vi(0)=ai 1= 1:2""111 (19)
Cv(ty)=p (20)

where C is a known n X 2n matrix and f is a known
constant vector.

Let vi(t) ( = 1,2,--,n+1) denote n+1 particular
solutions obtained by forward numerical solution of
Eq.(18) with the following n+1 sets of initial conditions;

vi(0)= e

vi+k(0) = Ojk

i=1,2,---,n jJ=12,---,n+1
k=1,2,---,n j=12,---,n+1
(21)
where & is the kronecker delta.
Due to the linear property of Eq.(18), we can com-

bine the n + 1 particular solutions to obtain another

solution
n+l

v(t) = Z k; vI(t) (22)

Th= unknown coefficients k;’s are determined in
such a feshion that the solution v(t) satisfies the bound-
ary conditions of Eq.(21). From the initial and terminal
conditions, we obtain the following equations.

n41
z k:j =1
i=1
n+l ) (23)
C) kivi(ty) =8
i=1
Equation (23) constitutes n+1 equations which can
be solved to determine the n + 1 k;’s. The solution is

then obtained by recombining the individual particular
solutions according to Eq.(22).

Second, consider the nonlinear differential system

i':f(v,t) 0<tLy (24)

with the boundary conditions
vi(0) = o 1=1,2,--,n (25)
U(v(tf)) =0 (26)

Equation (24) is linearized about a nominal solution
vo(t). The linearized equations are given by

Vp + AV = f(va,t) + [gi ‘ ]Av (27)
Vilva(n

where Av are corrections to the nominal solutions.
Eq.(27) is rewritten as follows

. af
Av=|—
¥ {3\.*

]Av+{f(vn,t) - va} (28)
va(t)

If va(t) is selected such that the initial conditions of
Eq.(25) are satisfied exactly but the terminal conditions

of Eq.(26) are satisfied only approximately, then the
boundary conditions are as follows:

Avi(0) =0 i=12.--
vy
v

Then, Eqs.(28) and (29) constitute a linear differential
system and can be solved by the method of particular
solutions. In order to avoid numerical differentiation
va in Eq.(28), we can rewrite Eqs.(28) and (29) using
Vv = v, + Av as follows:

=[] Jrr -] oo

v
with boundary conditions

- n

]Av(m -yt O

va(ts)

vi(0) = 1=12.---,n
oY - vy
= V() = | 5o va(ts) — ¥(va(ts))
av v
va(ty) va(ts)

(31)

The solution ¥(t) becomes a new nominal solution
va(t).

Now, we consider the nonlinear TPBVP of Eq.(17)
with boundary conditions. Let

()

%;(0) = 2o; i=1,2,---,m
[~k L)e(t) =0 (32)

Then

To obtain the linearized differential equation, we
need [g{;lv,.(:)] of Eq.(30). For the case of the LQR
problem with inequality control constraints, [%élv“(g)]
can be obtained easily by the following procedure.

By the presence of SAT function in Eq.(17), first we
evaluate the mx 1 vector R-1BTp~. If |(R~'BTp");| £
1forall j = 1,2,---,m, then the nonlinearity of Eq.(17)
disappears, so obviously

[af ] _ [ A —-BR“BT]
v va(t) 1@ - AT

If there are j’s such that |{(R~!BTp");| > 1, then we
define a m x n matrix Y. This matrix is basically
R-!'BT but each j-th row is replaced by a zero row
vector when j is the index such that |(R"!BTp*);| > 1.

Then,
af _{ A -BY
[57 vn(:)] - [—Q —AT] 33)

Substituting Eq.(33) into Eq.(30) gives us a linearized
differential equation.

&4



Simulated Results

We consider the previous flexible structure with
reference to Fig.1 and use the configuration parameters
as shown Table 1. The discretized equations of motion
are presented in Eq.(5). Here we use 3 finite elements
and time interval (0 < t < 1) with initial conditions
6(0) = 0.2 rad and y(z,0) =0 for all z. We use 1 for
a; and a3, 100 for ke, diag(5,50) for R of Eq.(14). We
assume that the controls are constrained in magnitude
as follows:

[u(t)] <0.4  and |up(t)] <0.015

Figures 2-5 show 6(t), wep(t), u(t). and uip(t) for
both cases (constrained control case and unconstrained
control case). The first four state and costate histories
of the constrained control case are shown in Figs.6 and
7 respectively. Figure 7 shows that the costates satisfy
the terminal condition p~(ts) = 0.
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Summary and Conclusion

The present paper introduces a simple method which
provides a physically meaningful performance index for
space structure models in the LQR problem. This
method gives us a reasonable modification of the usual
energy type performance index. A numerical proce-
dure is presented to obtain open loop solution of the
time-variant LQR problem with inequality control con-
straints, using the method of particular solutions incor-
porated with a quasi-linearization technique. This ap-
proach does explicitly consider control saturation con-
straints and therefore represents a generalization of
the standard(unbounded) control assumptions for LQR
problems. Numerical results are presented which shows
the utility of the method, using the idealized struc-
tural model which has a rigid hub with two flexible
appendages and finite tip masses.
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Appendix

The LQR problem of Eqs.(12,14,15) can be written
as the nonlinear TPBVP of Eq.(17) using the Pontrya-
gin’s minimum principle.

Pontryagin’s minimum principle:

z2* = Az" + Bu® (A1)
p* = -Qz* — ATp" (A2)
H(z*,u’,p",t) < H(z',u,p",t) forall admissible u
(43)
where H is the Hamiltonian function.
From Eq.(A3) (u Ru®) + (Bu™,p”) < —(u Ru) +

(Bu, p°) hold for all u such that ju;{f)] <1 5 =
112)""

Let us define w* as w*

= R-!BTp", then
1, . . . . 1
i(u JRu™) + (u, Rw™) < 5(u,Ru)+(u, Rw™)

Now we add 3(w", Rw") to both sides,

%(u' ,Ru™) + (u™, Rw™) + %(w', Rw*)

< %(u, Ru) + (u, Rw™) + %(w‘, Rw")

(u"+w™), R(u"+w")) < ((u+w"), R{ut+w")) (A4)

for all u such that |u;| < 1 where j =1,2,---,m
Equation (A4) implies that uj = —wj if |wj{ < 1 and
U} = —sgn{w;} if (I

To prove above statement, we proceed as follows:
a=u-+w"

Equation (A4) implies that the function P(u) =
attains its minimum at a”

(a, Ra)
=u" +w".

Since R is positive definite, the eigenvalues of R are
positive for all t.

Let D be the diagonal matrix of the eigenvalues. D =
PT RP where P is an orthogonal matrix.

¥(u) = (a, Re) = (a, PDPTa)
= (PTa, DPTa) = (b, Db)
= Zdj b?
=1
where b = PTa.




Since P and PT are both orthogonal, (b,b) = (a,a)
equivalently

m

=3 o)

Now we establish the relations

ml}n P(u) = ma'm(a, Ra)

= min
b=PTa*
J:

dj b} =) d; minb} (A6)
1 j=1 ’
Equation (A6) implies that if & minimizes {(a, Ra},
then the components bj,b3,---,b;, also minimize the
scalar product (b, b) where b = PTa.

In view of Eq.(A5), we may conclude that the vector
PPTa" = a* minimizes the scalar product (a,a).
Therefore, if (a*, Ra") < (a, Ra) then (a*,2") < (a, a).
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We can reverse our reasoning as follows:
If (a*,a*) < (a,a) then (a°, Ra’) < (e, Ra).

We know that

(a,8) = ((u+w), (wtw)) = D (s +wj).

=1

m

. _ . . «\2
We can deduce that nﬁn(a,a) = Jz_:l lz}‘xgl(uJ +wj)".

To minimize the positive quantity (u; +w; )2, one must

set

uj = —wj whenever |w;| <1
uj = 41 whenever w; < -1
uj = —1 whenever w; > 1 -
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Introduction

N the recent literature, an asymptotic stability theorem! for

autonomous and periodic nonautonomous systems was
used to prove the global asymptotic stability of the mass-
spring-damper system and the damped Mathieu system. For
such systems, the application of LaSalle’s invariant set theo-
rem? has been the conventional approach adopted to prove the
global asymptotic stability. When the derivative of the Lya-
punov function? vanishes, LaSalle’s theorem?® requires us to
show that the maximum invariant set of the system consists
only of the equilibrium point at its entry. Although it is always
simple to identify the set of points Q where the derivative of
the Lyapunov function vanishes, the maximum invariant set
I CQ is not always easy to identify. The main challenge of
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for publication Jan. 5, 1993. Copyright © 1993 by R. Mukherjee and
J. L. Junkins. Published by the American Institute of Aeronautics and
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LaSalle’s theorem? is therefore to sort out the maximum in-
variant set. For a distributed parameter system the dynamics
are described by a hybrid set of ordinary and partial differen-
tial equations. For such a system, the sorting out of the maxi-
mum invariant set is not a trivial task. In such a situation it is
useful to apply the theorem in Ref. 1 so as to comment on the
asymptotic stability of the system.

The distributed parameter system consisting of a rigid hub
with one or more cantilevered flexible appendages has ap-
peared in the technical literature quite frequently (see Refs. 4,
S, 6, and 7). The system described in Fig. 1 consists of four
appendages that are identical uniform beams conforming to
the Euler-Bernoulli assumptions. Each beam cantilevered
rigidly to the hub is assumed to have a tip mass. The motion
of the system is confined to the horizontal plane and the con-
trol torque is generated by a single-reaction wheel actuator.
Under the assumption that the system undergoes antisymmet-
ric motion with deformation in unison (see Fig. 2), a class of
rest-to-rest maneuvers was considered in Ref. 4. For the partic-
ular Lyapunov function considered, the best choice of the
control input only guaranteed the negative semidefiniteness of
the derivative of the Lyapunov function. To conclude the
global asymptotic stability using LaSalle's theorem, it would
be necessary to formally prove that the maximum invariant set
consists only of the equilibrium point. The global asymptotic
stability of the system was claimed in Ref. 4 in the absence of
this proof.

In this Note we consider the hub-appendage problem* with
modifications. The modeling and successful control of such a
system is expected to provide us with insight into the modeling
and control of a general class of distributed parameter sys-
tems. Using a Lyapunov function approach and the asymp-
totic stability theorem in Ref. 1, we prove that global asymp-
totic stability of the system is guaranteed provided the system
undergoes antisymmetric motion with deformation in unison.
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In other situations, such as symmetric motion with deforma-
tion in opposition (see Fig. 2), such a conclusion cannot be
drawn.

Theorem on Asymptotic Stability
Consider the nonautonomous system

i=f ((0.x0) M

where f:R, x D—R" is a smooth vector field on R, xD, D
C R" in the neighborhood of the origin x =0. Let x =0 be an
equilibrium point for the system described by Eq. (1). We now
state the theorem on asymptotic stability.'

Theorem. 1) A necessary condition for stable nonau-
tonomous systems: Let V(£,x): R, XD —R. be locally posi-
tive definite and analytic on R, X D, such that

. v [av
P(r,x)4 = <—a-;)f(t.x)

is locally negative semidefinite. Then whenever an odd deriv-
ative of V vanishes, the next derivative necessarily vanishes
and the second next derivative is necessarily negative semi-
definite. 2) A sufficient condition for asymptotically stable
autonomous systems: Let V(x):D~—R_ be locally positive
definite and analytic on D, such that V'<0. If there exists a
positive integer & such that

Vek-Iix) <0 vx #0: V(x)=0
{ (x) X (x) @

ViNx)=0 for i=2,3,...,2k

where V*!(x) denotes the (*)th time derivative of V with re-
spect to time, then the system is asymptotically stable. How-
ever, if VU)(x)=0, vj=1, 2,...,0, then the sufficient condi-
tion for the autonomous system to be asymptotically stable is
that the set

S = {x VUi x)=0, Vj= 1.2,...,00}
contains only the trivial trajectory x =0.

Hub-Appendage Problem

This example is taken from Ref. 4 with some modifications.
The hybrid system of ordinary and partial differential equa-
tions governing the dynamics of the system, which has already
been described in the introduction, is .

d¥ h
Ihuba"_2=“ +_Z:](M0""Si0) )]

!
dy & d% 3%,
—(Mg—rSy) = Srpx<'a—t—2' +Xm) dx + m[(lag + W 1>

2y, d? 3y
p<L+x__")+E—=o, i=1,2,3,4 (5

ar? dr? ax*

The boundary conditions on Egs. (3-5) are

y,.(,,,)li"‘ =0, i=1,234 ©)
ax |,
32)’,'
DX _o, i=1,273,4 7
x|, i 3 (@)
3y; m [, d% 3%y; )
= | ===+ i=1,273,4
x|, E1<dr2 aﬂl,‘ ! 3 @
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Notation of forces and moments

Fig. I Distributed parameter autonomous system counsisting of a
rigid hub with four cantilevered flexible appendages.

I ¥, (x0

ys(x W )l

e yj(x.l)

Fig. 2 Antisymmetric and symmetric motion of the system consist-
ing of a rigid hub and four flexible appendages: A is the antisymmetric
motion (deformation in unison), yi(x, t) =y2(x, ) =y3(x, t) =ys(x,
t) and B is the symmetric motion (deformation in opposition), y1(x, )
= =yax, 1), y3(x, £) = —ys(x, 1).

The state of the system is described by a hybrid set of dis-
crete and continuous variables:

z-= [0, B3, Orenyalx, 1), 2800 DY, ”] ©

at at

We choose the Lyapunov function V as
at

!
3\ < ay; )’
— - 10
+§,El(ax2> dx + m{{6+ a |, (10)

to derive control laws that will drive the system to its desired
state Zgegicea = (07, 0, 0,...,0,0,...,0). In Eq. (10), a,, a3, and

. 4 " fay; \2
V=%1,,.,,,02+ %(0~o,)2+ &ty H p<—y‘ +x0> dx
=1 ,
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a, are positive constants. It can be shown* that the choice of
u(t) as

4
u= —(l/al)[az(0—9/)+a40+(03—a|) g (’sio"Mio)]
a;>0 an

in Eq. (3), leads to ¥'= —a,82. Clearly, ¥ is negative semidef-
inite and is equal to zero if # = 0. To check for the asymptotic
stability of the system using the theorem in Ref. 1, we first
compute the higher-order derivatives of V. We find that when
V=0, the following always holds

YRk o kg [9K+ D2, VW =0, i=1,2,...,2k (12)

for some positive integer k. In Eq. (12), V* denotes the (x)th
time derivative of V, and 6‘*! denotes the (*)th time derivative
of 8. Using Eq. (12) and the sufficient conditions of the asymp-
totic stability theorem,! we conclude that the system is globally
asymptotically stable if 8?0 for any positive integer k. In
other words, if =0 at some time 7 = T, then the system will
be globally asymptotically stable if 6 is not a constant for all
t =T, and is a constant only at the equilibrium point.

We now investigate the case where § is a constant at a point
other than at the equilibrium point where Z#Z,. Let this
constant be <. Then Egs. (3-3) simplify to

4

U -3 (rSio-Mg)=0 (13)
i=1
X 3y ENY
—(Mjo—rSi0) = pxa—l'z'd.\' +ml af!l , i=1,2,3,4
. ! (14)
azy,‘ a‘)ﬁ .
p612+E[8x‘_0' i=1,2,3,4 (15)

The boundary conditions given by Egs. (6) and (7) remain
unchanged, but the boundary condition given by Eq. (8) sim-
plifies to

&
ax3

maz,-

[T i=1,2,3,4 (16)
!

R
Also, the input to the system u(¢) defined by Eq. (11) can be
simplified, using Eq. (13), to

4
u=Y (rSo—Mgq) = ‘;— @ -6c)2C=const (17
i=1 3

4
If we define Y=Y, y;, then Eq. (17) implies
i=1

ri)—, QZ—Y = -9 = const (18)
ax3  ox|,., EI

If we make the reasonable assumption that Y(x, t) is of the
form Y(x, t)=F(x)G(t), then Eq. (18) leads to
| #F 3F '
G(t —— — =
(1) lr e axz]x=, const 19)

Equation (19) implies that G(f) is a constant. Summing Eqs.
(15) and (16) over i =1 to i =4, we have

Y 'Y

— + El— =
FYs! axt 20
2v| _m 3y on
ax}|,  EI a*},
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Because Y(x, {)=F(x)G(t), and G(r) is a constant, Egs. (20)
and (21) imply

Y 3?Y

Pl 0= a0 const (22)
,33_)/ =0 23)
Bx’ !

From Eqs. (22) and (23) it follows that (3*Y/3x%) =0, which
implies that (3°Y/3x?) is a constant. Additionally, the value
of this constant can be shown to be zero from the boundary
condition in Eq. (7). Proceeding in the same way and using
the boundary conditions in Eq. (6), it is trivial to show that
@Y/3x)= Y(x, t)=0. This implies from Eqs. (18) and (17)
that ¥ =0 and 6 =0,. Clearly, the maximum invariant set
for the system comprises the set of points where 0=40,,
6=0, and £}_, yi(x, 1) =0. If there exist functions y;(x, 1) #0,
i=1, 2, 3, 4 such that Y=T]_,y;=0 holds, then the set
S =1{Z:VUXZ)=0, vj=1, 2,...,} contains entries other
than the trivial solution Z = Zg.eq- In such a situation we
cannot claim global asymptotic stability of the equilibrium
point. Such a situation may arise in the case of symmetric
deformation in opposition, shown in Fig. 2, where y,(x, 1)
= —y(x, 1) and y;3(x, 1)= — ¥4(x, t). In such a situation, the
residual energy of the system remains trapped within the
beams. There exists no net interacting moment between the
hub and the beams, and the hub remains motionless at its
desired configuration 6 =6,.

The case of antisymmetric deformation in unison, shown in
Fig. 2, was considered in Ref. 4. In this case, it is assumed that
yx, Dy =yax, 1) =mn(x, 1) =v,(x, ). When Y(x,t)=0, this
implies that y;(x, 1)=0 for i =1, 2, 3, 4. Therefore, for anti-
symmetric deformation in unison, it is quite simple to show
that the set S={Z:VUY(2Z)=0, vj=1,2,...,0} contains
only the equilibrium point Z = Z ... Consequently, we can
establish the asymptotic stability property of the hub with the
flexible appendages undergoing antisymmetric deformation in
unison under the input defined by Eq. (11). The control law
given in Eq. (11) was used to stabilize the system to the equi-
librium point in Ref. 4, but no formal proof for the asymptotic
stability was provided.

Conclusion

The rest-to-rest maneuver of the distributed parameter sys-
tem consisting of a rigid hub with four cantilevered flexible
appendages was studied. The best choice of the control input
resulted in the negative semidefiniteness of the derivative of
the Lyapunov function. An invariant set analysis of the system
was subsequently carried out using an asymptotic stability the-
orem.! The analysis establishes the fact that the hub-ap-
pendage system is globally asymptotically stable when the sys-
tem undergoes antisymmetric motion with deformation in
unison. '
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NEAR-MINIMUM-TIME THREE-DIMENSIONAL MANEUVERS
OF RIGID AND FLEXIBLE SPACECRAFT

Mark J. Bell'! and John L. Junkins®

An approach is presented to accomplish large angle, nonlinear, three dimensional

attitude maneuvers in either near-minimum-time or near-minimum-fuel. The
method permits the specification of a torque shaped reference maneuver of the

near-minimum-time (bang-bang) or near-minimum-fuel (bang-off-bang) type; the
instantaneous switches are replaced by controllably sharp spline switches to reduce
excitation of flexible degrees of freedom. A Lyapunov method is used to design
tracking-type control perturbations to suppress errors due to disturbances and
‘model errors. The method is illustrated by numerical simulations and some
experimental results using the ASTREX test article.

INTRODUCTION

Primarily -due to mass considerations, future spacecraft will most likely have
large . flexible appendages and exhibit significant coupling between overall rigid
body motion and vibratory motion. Many of these spacecraft will be required
to perform a variety of maneuvers in three-dimensions in near-minimum-time, or
near-minimum-fuel, with limited computational abilities, while suppressing flexible
modes of vibration. ‘A torque-shaped reference maneuver design, augmented by a
Lyapunov stable tracing law can achieve these stated requirements with robustness
in the presence of uncertainty. ‘

The main goal of this paper is to demonstrate one effective approach to control
a flexible spacecraft in near-minimum-time in three dimensions -while actively
and passively suppressing flexible modes of vibration. Secondarily, an analogous.
development for the the near-minimum-fuel case are presented. Feasibility of
this approach is discussed based upon analysis, computer simulation using both
a rigid-body and a flexible-body simulator, and through results from laboratory
experimentation. The experimental portion of this research was performed on the

Advanced Space Structure Technology Research Experiment (ASTREX) test article

1 Student Member ATAA, Graduate Research Assistant
2 George J. Eppwright Professor, Fellow AAS, Fellow AIAA
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located in the Phillips Laboratory, Edwards Air Force Base, California. This study
was undertaken as a part of the NASA/DOD Guest Investigator program.

The basic concepts underlying modern spacecraft dynamics and control have
been treated by many authors, including Junkins and Turner.! Single-axis control
of flexible spacecraft has been studied?~® and the optimal control problem in three-
dimensions has been addressed by Vadali, Singh, and Carter.”® Near-minimum-
time control of dynamic systems, which include single-axis maneuvers of flexible
spacecraft and flexible manipulators, have also been studied.’~'? The purpose of
this paper is to present a general three-dimensional approach, leading to maneuver
laws for the ASTREX structure. General model information, as well as a rigid body
model and a flexible body model for the ASTREX test article, are available.!3:2:14
A near-minimum-time approach is formulated to control the ASTREX orientation
while vibration is attenuated using input smoothing!!. Additionally, effects of model
errors and disturbances are compensated using an asymptotically stable feedback
controller based on the work by Junkins et al'l, Wie et al'®, Vadali'®, and Junkins
and Kim!?.

EQUATIONS OF MOTION
The rigid body dynamics are modeled using Euler’s equations for a rigid body.
The matrix [I] is the inertia matrix, w is the angular velocity vector, [@] is the matrix

representation of the standard cross-product, and [B] is the control influence matrix,
each of which has dimension 3 X 3.

e + [@){w = [Blu (1)

The control input to this equation consists of a reference control, %,.¢, and a
tracking control or terminal control, 6, as shown below.

U= Upep +OU (2)

The kinematic equations used in the spacecraft model, equations (3) and (4),
are the set of 1-2-3 Euler angles which were used to determine the body’s position
in space relative to a fixed coordinate system.

1 Cos(03) —Sin(0;) 0

{Q}:C @) Cos(62)Sin(03) Cos(62)Cos(63) 0 {w} @)
05\92) | _Sin(6,)Cos(f3) Sin(83)Sin(83) Cos(62)

Cos(82)Cos(f3) Sin(63) 0] . V
{w} = | ~Cos(8:)Sin(85) Cos(ss) 0| {8} =1[c(0)){£} 4)
Sin(02) 0 1

These equations are used to orient the rigid body relative to a fixed inertial
frame.
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THE CONTROL LAWS
Near-Minimum-Time Maneuvers

The simplest minimum-time maneuver for a near-rigid vehicle undergoing a
single-axis maneuver is a single switch “bang-bang” control law. However, the
sharp switching will excite some flexible modes of vibration. The near-minimum-
time maneuver proposed rounds off the sharp switches by replacing the sharp
discontinuities with a controllably sharp cubic polynomial and introducing a shaping
parameter @ : 0 < a < 0.25, where at a =0, the torque profile is a square wave and
at o = 0.25, the torque profile is a smooth sine-shaped profile satisfying zero initial
and final slope conditions. It should be noted that as o increases, the maneuver
time (t5) increases, and the vibrational energy is expected to decrease due to the
greatly increased rolloff in the spectral content of the control input. The cubic
polynomial, defined as the shaping function f(t,,t5) is defined!! as follows.

(&) [3-2(&)] for 0 <t < At = aty

for At <t <tp[2-At=1t
f(t,a,tf)=j 1-2(58)° B-2(5h)] forty <t<tg/2+At=ty  (11)
' -1 fort, <t <ty —At=t3

-1+ (58)° [3-2(58)] forts <t<ty

The basic idea underlying this torque—shapi.ng' approach is to establish a smooth

rigid body reference maneuver, 8,.4(t), then calculate the corresponding open loop
control law by inverse dynamics. This reference torque, when applied to the body,
will make §(t) approximate 0,..¢(t). The Lyapunov tracking law, which is discussed
in the next section, seeks to cause §(t) to track §,..;(t) in the presence of disturbances

and other non-ideal effects while also suppressing structural vibrations. As will be
evident, it is possible to develop the tracking law to guarantee asymptotic stability
in the absence of model errors. The development of the open loop control law is -
shown below, beginning with the standard linear second order equation of motion
for a rigid body:

16 = [Blu (6)
= [B) iz £t st) (7)

This equation can be applied to the reference maneuver, manipulated, and then
integrated twice, yielding Oref, Ores, and O,¢5 as shown.

Bof(t) = (7 (Blumes f(hasty) ®)
g (8) = 8y + 117 (B e / F(ryots)dr (9)
By (£) = 0, + G0t + (1] [B] tynas /0 /0 T fmasts)dndr  (10)
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However, the shaping function, f(t,a,ts), can be integrated twice, piecewise,
with the elegant generalization of the bang-bang (o: = 0)result:

T imantyydndr = (- Lo+ La?) ¢ (11)
o Jo TPEEIEMET=AE T 3% T 10 f

Substituting this result into the previous equation and considering a rest-to-rest

maneuver (Q(to) = (t;) = 0) yields the following expression for 8¢ — 8.,

0;—-0,= (17 (B] {Z%maz 57} (i - -;—a + 1_16 a2) (12)

This equation can then be inverted to solve for the required maneuver time
on each axis, as a function of the maneuver angle change, shaping parameter, and
maximum torques as:

t2 u
fr mman B]7Y[I1(85 -8
B vy b = (B 2 80) (13)
f2 timazs C-latioa?)
t.fs Umazs 4 2 10
The total maneuver time, t¢, is then simply:
ty =maz (tf,ints,) | (14)

The effect of increasing alpha on a normalized maneuver time and the resulting
profiles are shown below as Figure 1. As expected, the maneuver time increases as

o increases, as-illustrated in the figure.
A ]

alpha increasing

I 1

0 0.2 04 0.6 0.8 1 1.2 14
normalized time

Figure 1. - Bang-Bang Shaping Function vs. Normalized
Time for Increasing a.
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The total maneuver time, tg, can be substituted into the previous equation
and a vector of constants containing the maximum torques, which will be applied
on each axis, up, can be determined.

(Bl (18, —6) 1

ST Gter b))

(15)

The values of up, tf, and a selected value of a, can then be inserted into
equations (8)-(10), yielding:

B5(8) = (17 [Blug f(t o ty) | (16)
By (t) =0, + 117 [B)ux /0 F(r,onts) dr (17)
Ores t)=0,+8,t+ 1" [B]QRA /()T f(?],a,tf)dﬂdT _ (18)

Now, using the exact rigid body dynamics, we can solve for a control upef(t)
which would cause the rigid body vehicle to execute the maneuver Ores(t). First,
the kinematic equations for the set of 1-2-3 Euler angles, shown in matrix form as
equation (4), can be used and then differentiated to determine w,..;(t) and w(t).

gref(t) = [C (Qref)] -Q.oref (19)

-‘i(t) = % [C (Qref)] -é»ref + [C (_Qref)] .éref (20)

The reference torque, %, f(t), can then be found by inverse dynamics, using
Euler’s equation.

3

-qref(t) = [B]_l ([I] Qref + [6T€f] [I] —"’:)-ref) (21)

Hence, the near-minimum-time torque-shaped maneuver has been extended to

the three dimensional case. :
Motivated by the need to consider a wider class of reference maneuvers, such as

near-minimum-fuel, it was noted that any function which is twice integrable may in
principle be used as the shaping function. Seeking to establish a torque-shaped
family of near-minimum-fuel maneuvers, we consider the bang-off-bang control
parameterization shown below as equation (22), where t3 denotes the time at the
end of the first pulse, B corresponds to the coast time, and o parameterizes the
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sharpness of the of the control on/off profile.
( (Kt;)z [3-2(%)] for 0 <t <t; = aats
1 fort; <t <ty =(1-2a)t;
~ 1-(52)2 [3-2(5k)] forte<t<ts=ty
g(t’aaﬁ’t:}): ﬁ 0 for 3t<ty=13 +ﬂ (22)
t—ty)2 t—t =
—(t5%)" B-2(%%)] forts <t<ts=ti+t3+p0
-1 forts <t<ts=ts+t3+0
| -1+ (45) B -2 (4

At )] forte <t <ty=2t3+0

Following the same procedure yields an alternative torque shaped control law.
Figure 2 shows the effect of increasing alpha from 0 to 0.25 on the normalized

maneuver time while holding 8 constant at 1. This figure shows that the maneuver
time increases as the control profile becomes smoother.

1— - . ' ' ? ]
% oL~ : g g - L
’ 1 L 0=0.25
Alpha Increasing y 0‘].'0 i
-1 . ' , k ) ) SV \.4.;.1.'... , u
0 02 04 0.6 08 1 12 1.4

normalized time

Figure 2. - Bang-Off-Bang Shaping Function vs. Normalized
Time for Increasing a.

The effect of decreasing beta, while maintaining a constant value for a of 0.25

on the maneuver time, is shown in Figure 3. Again, the maneuver time increases
as the coast time is increased, as seen in the figure.
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Figure 3. - Bang-Off-Bang Shaping Function vs. Normalized
Time for Decreasing f.

Two open-loop control laws have been developed in this section; computational
and laboratory experimental results are discussed below. These open-loop control
laws are established for a general rigid body that moves in three-dimensional space,
although it is recognized that these reference maneuvers may be significantly sub-
optimal for the case when the gyroscopic coupling effects are large. Application
of this torque-shaping scheme to any rigid body requires a priori knowledge of the
inertia matrix and the control influence matrix, both of which are required to be
invertible. Asis evident in the robustness studies, however, including a well designed
tracking law to compensate for larger-than-expected errors. ‘

The open-loop control laws presented in this section are exact solutions based
on an inverse dynamics approach. Although the control laws are expected to
perform well, a closed-loop feedback control law will almost always be needed
to compensate for approximation errors as well as disturbances and identification

€erTors.
A Lyapunov Tracking Controller

The tracking controller is a Lyapunov tracking controller which uses a different
parameterization of the positional error energy term. The Euler parameters, ¢, are

used to relate the actual frame to the reference frame of the body; note ( is often
known as the “error quaternion”. Hence, when these two frames coincide, the Euler
parameters will be identically ¢ = [1 000]T. The Lyapunov function and its first
derivative is shown below.

2V = swT [I) 6w + ¢T [W]¢ (23)
V=6 [N6a+ ¢ [W]C (24)

Through manipulations to follow, the time derivative of V in Equation (24) can
be re-arranged to form V= dw{fnct(dy, ¢, w)}, and this structure can be exploited
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to determine a control law for du which guarantees V < 0. Calculating the Euler
parameters from the 1-2-3 set of Euler angles of the actual frame and the reference
frame is a straightforward process. The orthonormal rotation matrix from the
inertially fixed frame to the actual frame is shown below. It should be noted that
s; and ¢; stand for sin(6;) and cos(6;), respectively.

. C2C3  $3C1 +C35281 8183 — C352€1
[T(Q)] = —(C283 C€3C1 — S38281 S1C3 — 835201 (25)
S9 —C281 [ 15]

Additionally, the rotation from the fixed frame to the reference frame is
identical in format with the exception that S; and C; stand for sin(fyres;) and
cos(Bre, ), respectively. The rotation matrix between these two frames can be found

easily using linear algebra, noting the fact that the inverse of an orthonormal matrix
is its transpose. The rotation from the fixed frame, whose orthogonal unit vectors

~

are denoted by @, to the body reference frame, b, s, and to the actual frame, b, are

shown below.
b=[T(®)a ' (26)
bres = [T(8rep)) . (27)

The second of these equations can then be inverted yielding an expression for
projecting the fixed frame unit vectors onto the reference frame.

ﬁ‘- = [T(Qref)]T bref (28)

This equation can then be substituted into equation (26), yielding the desired
relationship between the actual frame and the reference frame.

b= L@ T @ef)] by (29)

The error rotation matrix between the two frames is then defined as [R].

[R] = [T@O)][T(0rep))” - (30)

We note that [R] is typically a near-identity matrix because it represents the

tracking error angular displacement of b from b, - Once [R] has been computed,
the set of Euler parameters between these two frames can be computed as follows:

trace(R) = Ry1 + Rz + Ras , (31)

Co = \/&(1 +trace(R))| (32)
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G = '4—160—(1223 — Rj) (33)
(2= Z%)’(RSI — Ry3) (34)
(= ZIC—O(Rn — R1) (35)

This set of Euler parameters is governed by the following matrix differential
equation:

-G -G -G

| e -G G|,

¢= GG ¢ -G 6 (36)
¢ G G
(=[G sw (37)

Taking the transpose of this equation yields:

;T T T

¢ = 8w [G({)] (38)
By utilizing this result and Euler’s equation (1) to eliminate (16w, equation

(24), the derivative of the Lyapunov function can be arranged in the desired form.
This will permit construction of a stabilizing feedback control law.

V = 6w (~[@)]w + Bref]Twres + [Bloz + [G(O]" [W]¢) (39)
= —6wT[K]éw (40)

The second step, Equation (40), is motivated by the desire that 6u be chosen

such that V < 0. Equating the right hand sides of the previous two equations yields
an intermediate algebraic equation:

—[K1ow = — (G + Breslllwres + [Blou + GOV [W]¢ (41)

Solving for the feedback control §u from equation (41) yields the asymptotically
stable feedback control law:

6u = [B]™ (- [K]ow + @)1 — @reflllleres ~ [CO) W]G) (42)

This perturbation is superimposed on the reference control in the sense u(t) =
© Uyes(t) + 6u(t). The gains [K] and [W] were selected subject to the eigenvalue
placement constraint that they produce critical damping on the linearized second
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order linear model for rigid body motion. In addition, a scaled inertia matrix was
used as the gain matrix [K], since this provides a one-parameter family of symmetric
and positive-definite gain matrices. It should be noted that the matrix [W], as shown
beldw, is not positive-definite. However, if the last three terms in the relative Euler
parameter set  are zero, then perfect tracking is accomplished (i.e. the set of Euler

parameters is redundant). Hence, the fact that [W] is semi-positive definite is not a
problem due to the redundancy of the Euler parameters. The gains used throughout
this paper are shown below. More generally, the gain matrices would be subject to
optimization over the set of stable gains to extremize a performance measure, along
the lines of Junkins and Bang!®.

[K] =c1[I); c1=25298 and [W]=c; [3 L[)“Iqi] ; cg=1.6

EXPERIMENTAL RESULTS
Bang-Bang Experimental Results

The Advanced Space Structure Technology Research Experiment (ASTREX)
test article is a large experimental structure that resembles a.spaced-based laser
beam expander as shown in Figure 4. The 5000 kilogram structure is mounted on a
spherical air bearing and is maneuvered using a specified set of cold gas thrusters.
A set of six 8-pound thrusters or a set of four 200-pound thrusters plus two 8-pound
thrusters are available for controlling the structure. For each set, two thrusters fire
in unison to produce torque. Hence, three sets of two thrusters firing in unison are
needed to control the test article in three dimensions. All thrusters are powered
by compressed air which is stored in two pressurized tanks. These pressure tanks
have a limited supply of compressed gas which results in a fuel constraint. To avoid
'difficulties with the fuel constraint, only the bang-off-bang control law is used in
conjunction with the 200-pound thruster set.

The first set of experimental results was tested using the set of 8-pound
thrusters operating at a maximum thrust of 3 pounds in conjunction with the
open-loop bang-bang control profile. The inertia matrix and the control influence -
matrix for the structure were given in reference 14 and were found by using a
system identification technique. Due to the fuel constraint and to a nonlinear valve
problem associated with low tank pressure, the maximum thrust from each thruster
was limited to three pounds . The open-loop reference profile used on the first test
is a fifty-degree yaw maneuver.
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Figure 5 - Bang-Bang Open-Loop Experimental Angle Profile
on the ASTREX Test Article

During experimentation, the thruster commands were given in volts, which were
measured and stored as input, and a pressure feedback on each individual thruster
was used to determine the output force at each thruster. Additionally, three gimbal

. angles and tank pressure were also sensed.and stored as output. Figure 5 shows

the gimbal angles in the body frame with respect to time in the form of three strip
plots.

This figure shows that the test article moved approximately forty-two degrees
in the yaw direction. This is eight degrees short of the specified maneuver. The -
rotation in the roll direction is oscillatory, but small. This small discrepancy could
have been caused by any unmodeled, unsymmetric mass in the model or by a
thruster pair generating slightly different forces, or due to unmodeled suspension
system dynamics. The pitch angle encoder appears to have a sensor or grey code
problem which causes the noisy output signal. However, the actual and measured
motion in -the pitch direction are small. It should be noted that these tests
were performed open-loop and thus no on-line feedback corrections were made to
compensate for modeling or hardware errors. It is anticipated that the closed-loop
control capability for the ASTREX structure will exist in the calendar year 1994
time frame.

The motion in the yaw direction is approximately 16% short of the specified 50
degree maneuver; this could have been caused by a number of factors. If the inertia
used in the design model was smaller than the actual inertia of the structure, a
smaller angle change would be expected. The hardware cables are suspended from
the structure; this produces cable drag, a rotational spring-like force in the yaw
direction, as the cables are pulled away from their equilibrium position. A cable-
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follower mechanism attempts to compensate for this problem; while the magnitude
of the cable-follower induced disturbances are reduced, the cable-follower dynamics
adds additional complexity in modeling the disturbances acting on the structure.
This uncompensated cable drag phenomena would also produce smaller motion in
the yaw direction in addition to a small angular velocity which would remain about
the yaw axis as the structure returned to its equilibrium position. A final cause of
the under-rotation problem is known to be due to low tank pressure near the end
of the maneuver. Figure 6 shows the thrust commanded to each individual thruster
in volts, this graph is identical to the output from the control law design except for
the conversion of thrust to volts.

3_/
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..3: /
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15
TIME
8 1b thrusters commands(volts)
Figure 6 - Bang-Bang Open-Loop Experimental 8 Lb. Commanded
- Thruster Profile on the ASTREX Test Article

Figure 7 shows the output thrust at the nozzle of each thruster. The
degradation of the thrust on the first two sets of thrusters can be seen beginning
around 18 seconds, where the output profile becomes piecewise linear and decreases
in comparison with the smooth commanded thrust. Although the degradation is
not severe, it is definitely present. At low pressures, the solenoid valves behave in
a poorly-modeled nonlinear fashion, especially evident when the valves are being

closed. Notice the lack of left-right symmetry on all six final “braking” pulses of
Figure 7.
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Figure 7 - Bang-Bang Open-Loop Experimental 8 Lb. Actual
Thruster Profile on the ASTREX Test Article
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Figure 8 - Bang-Bang Open-Loop Experimental Tank
Pressure Profile on the ASTREX Test Article

Figure 8 shows the tank pressure profile in pounds per square inch. It is noted
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that thrust deterioration for the 8-pound thrusters occurs as the tank pressure falls
below 150 psi at 18 seconds. Notice, comparing Figures 7 and 8, that the relatively
most significant thruster anomalies occurred at tank pressures well below 150 psi
(i.e. the final 15 seconds of the maneuver).

Bang-Off-Bang Experimental Results

The second set of experimental results was performed using the bang-off-bang
open-loop control law in conjunction with the set of four 200-pound thrusters and
two 8-pound thrusters. The specified maneuver was a 150 degree yaw maneuver,
with the 8-pound thrusters limited to three pounds each and the 200-pound
thrusters limited to 50 pounds each for fuel and safety reasons. Figure 9 shows
the gimbal angles verses time for the second set of experimental results.
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Figure 9 - Bang-Off-Bang Open-Loop Experimental Angle Profile
on the ASTREX Test Article

This figure shows that a yaw angular rotation of only 32 degrees was accom-
plished from a required 50 degrees. The yaw angular velocity at the end of the
maneuver was in the direction opposite of the maneuver; this appears to be the
result of cable drag. The roll angle was again oscillatory but small and the pitch
sensor exhibits the same noise characteristics.

Figure 10 shows the commanded voltage to the set of 200-pound thrusters.
Each 200-pound thruster consists of two components which fire in opposite direc-
tions and are measured and controlled separately.
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The output pressure measured at the nozzle of the 200-pound thrusters is shown
as Figure 11. This figure illustrates how the two components of each thruster work
in unison to produce the positive and negative components of the input signal.
Although the reproduction of the input signal does not deteriorate near the end of
the maneuver, some anomalous pressure leakage is evident.

Figure 12 shows the commanded voltage levels to the 8-pound thruster set
which is used in conjunction with the 200-pound thrusters to provide controllability.
This figure shows that the first two sets of 8-pound thrusters are zero since they
have been replaced by the 200-pound thrusters. The third set of 8-pound thruster
commands are shown as the two lower plots.
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Figure 12 - Bang-Off-Bang Open-Loop Experimental 8 Lb. Commanded
Thruster Profile on the ASTREX Test Article

b o n H © MO

The pressure sensor at the nozzle of the 8-pound thrusters is shown as figure
13. The first two sets of readings show that these thrusters are firing although they
have been commanded to be off. This phenomena may be the result of electrical
feedback within the hardware. Again, the third set of 8-pound thrusters have output
deterioration near the end of the maneuver beginning at 10 seconds.

The final experimental figure (Figure 14) shows the tank pressure verses time.
It is noted that at 10 seconds, where the 8-pound thruster degradation begins, the
-tank pressure has fallen below 150 psi. Figure 14 shows the tank pressure verses
time for the bang-off-bang control law. It should be noted that during the coast
period, the rate of pressure loss is approximately zero. This is the characteristic
of the bang-off-bang control law which, of course, that saves fuel. The fact that
there is a measurable negative slope, however, indicates that significant leakage is
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occurring somewhere in the complicated plumbing system.
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CONCLUSIONS

A torque-shaped maneuver approach for a spacecraft in three-dimensions has
been developed and demonstrated to work extremely well using open-loop and
closed-loop simulations for the bang-bang and the bang-off-bang maneuvers. In
each case tested, the open-loop tracking error was essentially zero; the only errors
introduced in the simulation were due to integration and interpolation errors. The
closed-loop Lyapunov tracking control law drove large initial tracking errors to
essentially zero within a few seconds and kept errors negligible until the final time
using simulations where only initial condition errors were introduced. Additionally,
only modest degradation of this performance resulted when significant model
errors were introduced into the simulation, the Lyapunov tracking control law
compensated for the model errors and initial condition errors, and again regulated
the tracking error to essentially zero by the final time. Hence, the Lyapunov tracking
controllers were shown to be robust with respect to modeling errors and initial
condition errors.

The experimental portion of this research showed some positive results, how-
ever, also revealed are several hardware problems likely to be resolved with fu-
ture evolution of this experimental facility. The experimental open-loop maneuvers
showed the same general trends as the simulated data although they differed in mag-
nitude. This discrepancy appears to have been caused by an underestimation of the

mass of the structure and some unmodeled effects due to solenoid valve nonlinear-
ities. Secondary problems are apparent in modeling the gimbal and cable-follower

- dynamics. Simulated maneuvers using an increase in mass of 10% on the open and

closed-loop simulations were performed. The experimental data exhibits similar
open-loop characteristics to the simulated data with a mass error. This problem
was easily compensated for in simulation by closing the control loop.. Closed-loop ex-
perimental results are not yet available due to current system hardware limitations,

. mainly, the angular rate measurements.” Also, a significant number of unexplained

anomalies were encountered in the experimental results; however, these may be
considered typical of the early experimental “shakedown” of such a complicated
electromechanical system.

The ASTREX test results also revealed some actuator problems generating

the commanded thrust profiles using the 8-pound thrusters near the end of the - -

maneuver when the tank pressure dropped below 150 psi. This problem stems
from the fact that the cold gas thrusters’ solenoid valves were designed assuming a
constant back pressure of 500 psi. Our results suggest that the design specification
of 500 psi is quite conservative; the thrusters operate reliably down to 175 psi
using low thrust commands. With the present pressurized gas supply system, very .
low tank pressures (j 150 psi) routinely occurred because the tanks can only be
pressurized between maneuvers. The thrust generation problem could be handled
by performing maneuvers that only require only a very small amount of fuel and
thus maintain a tank pressure above 150 psi, however, these small angle maneuver
are less interesting and remove many of the nonlinear issues of intent from the
system dynamics. Another problem was the support system in the yaw direction
which was caused by to the natural equilibrium position of the structure and a
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disturbance torque due to cable drag and cable-follower dynamics. These two
phenomena could also cause the open-loop experimental maneuver to fall short of
the required final yaw angle as well as causing the yaw angle to drift back towards
its starting orientation upon completion of the open-loop torque profile. Each of
these problems can be handled with rigorous modeling before deriving the open-
loop control law or by using feedback compensation with appropriate sensing system
enhancements.

The goal of this paper, to extend the near-minimum-time maneuver design
technique to three-dimensions, was accomplished. The simulated results, both open-
loop and closed-loop, were excellent and the preliminary experimental tests showed
promising results.
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Rodrigues Parameters’
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Abstract

A new family of orientation parameters derived from the Euler parameters is presented. They
are found by a general stereographic projection of the Euler parameter constraint surface, a four-
dimensional unit sphere, onto a three-dimensional hyperplane. The resulting set of three
stereographic parameters have a low degree polynomial non-linearity in the corresponding
Kinematic equations and direction cosine matrix parameterization. The stereographic parameters
are not unique, but have a set of “shadow” parameters. These “shadow” parameters are generally
numerically different, yet represent the same physical orientation. Using the original
stereographic parameters combined with their shadow set it is possible to establish a set of three
parameters which can describe any rotation without a singularity, yet with one discontinuity. The
symmetric stereographic parameters are ideal to describe departure motions, since they can be
chosen such that they are nonsingular for up to a principal rotation of +360°. The asymmetric
stereographic parameters are well suited for describing the kinematics of spinning bodies, since
they only go singular when oriented at a specific angle about a specific axis. A globally regular
and stable control law using symmetric stereographic parameters is presented which can bring a
spinning body to rest in any desired orientation without backtracking the motion.

Introduction

While the Euler parameters (quaternions) describe an arbitrary orientation without a
singularity, they form a once-redundant set. The following development studies a method to
stereographically project the Euler parameters onto a three-dimensional hyperplane and form a

family of sets of three parameters called the stereographic parameters. This study is motivated by
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earlier work done by Marandi and Modi [1}, Tsiotras [2] and Shuster (3]. In particular, Marandi
and Modi introduce a set of three parameters similar to the Rodrigues parameters (singular at a
principal rotation of ® = +180°), which move the singularity out to a principal rotation @ of
+360°! Marandi, Modi and Tsiotras describe this modified set of Rodrigues parameters as the
result of a stereographic projection of a four-dimensional unit sphere onto a three-dimensional
hyperplane. This paper will explore the stereographic projection idea further and in a more
generalized way, and show that both the classical Rodrigues parameters and the Modi/Tsiotras
modified Rodrigues parameters can be considered a special case of the general symmetric
stereographic parameters. Indeed, the method presented can be used to construct a set of three
symmetric stereographic parameters which have their singular point anywhere between a
principal rotation of 0° and 360° or to construct a set of three asymmetric stereographic
parameters which have their singular point determined by both a principal angle and an axis of
rotation. Analogous to the Euler parameters, the stereographic parameters are generally not
unique. The Euler parameters time variation, for any physical motion, generate a trajectory on the
surface of the unit sphere constraint surface. The refiection of the Euler parameters (reversing all
parameters signs) generates a second trajectory on the opposite of the sphere which corresponds
to the same physical rotation. Each set of stereographic parameters has a set of “shadow
parameters” which correspond to the reflection set of Euler parameters. These “shadow”
stereographic parameters are generally numerically different from the original parameters, yet
physically parameterize the same rotation. The developments presented herein are of significant
academic importance; using stereographic projections it is easy to visualize the singularities of
this infinite family of three parameter sets which include the classical and modified Rodrigues
parameters. ’

The modified Rodrigues parameters, as introduced by Marandi and Modi, are studied in
further detail, since they present the largest range of non-singular rotations for the symmetric
stereographic parameters. In combination with the corresponding set of “shadow parameters”, a

globally regular and non-singular Lyapunov attitude control is established in feedback form.

The Euler Parameter Unit Sphere

The four Euler parameters are well known and well studied in the literature. They can be

developed directly from Euler’s principal rotation theorem [3,4]. The angle @ is the principal
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rotation angle and the unit vector ¢ is the principal line of rotation.

Bp=cosgy By mepsing  i=L23 M
6B = B+ By +B3 B3 = 1 @

The four Euler parameters B; abide by the holonomic constraint given in equation (2). This
equation describes a four-dimensional unit sphere. The Euler parameter trajectories on this sphere

completely describe any possible rotational motion without any singularities or discontinuities.

‘Note that the Euler parameters are not unique. The mirror image trajectory -f(r) describes
the identical rotational motion as B(¢). The negative sign means the rotation is accomplished
about a principal axis of the opposite direction through the negative principal angle. Usually this
non-uniqueness does not pose any difficulties since both sets have identical properties, correspond
to the same physical orientation, and can be solved uniquely once initial conditions are

prescribed.

Because the Euler parameters satisfy one holonomic constraint, they form a once redundant
set of equations. Three parameters are sufficient to describe a general rotation. ‘However, the
problem with any set of three parameters is that, as is well known, singularities will occur at
certain orientations. Different three-parameter sets distinguish themselves by having different
geometric interpretations and, especially, having their singular behavior at different orientations.
Also of significance, most three-parameter sets introduce transcendental nonlinearities into the
parameterization of the direction cosine matrix and related kinematical relationships. However,
the classical Rodrigues parameters and other sets discussed herein involve low degree polynomial
nonlinearities in both the direction cosine matrix and associated kinematical differential equation,
without approximation. The Euler parameter description represents an attractive regularization

which has no singularity, at the cost of having one extra variable.
Stereographic Projection of the 4D unit Sphere

If a minimum parameter representation is desired, the four Euler parameters can be reduced to :

any parameter set of three by an appropriate transformation. For example, the 3-1-3 Euler angles
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or the Rodrigues parameters are very commonly used sets that are easily transformed from the

! .
| Euler parameters [3,4]. Marandi, Modi and Tsiotras found a set of modified Rodrigues parameters
by means of a stereographic projection of the four-dimensional unit sphere onto a three-
dimensional hyperplane. To describe the stereographic projection, imagine a three-dimensional
o sphere being projected onto a two-dimensional plane (analogous to the Earth map projection
problem). A certain point is chosen in the 3D space called a projection point. Next a 2D mapping
plane is chosen. Every point on the unit sphere is then projected onto the mapping plane by
drawing a line from the projection point through the point on the unit sphere and intersected with
|
the mapping plane.
AB
y .
mapping
: a8
projection \‘\
point g ) Bo-B)
®
(2,0) ) ks .
B AN
/ zero
A~ tat
. 'l, i;?n_ rotation
unit / ',’ll
circle \_/
® < 1 >
Fig. 1. Illustration of a Symmetric Stereographic Projection onto Hyperplane
Orthogonal to B axis.
® Figure 1 shows only a 2D to 1D stereographic projection to keep the illustration simple. The
results though can easily be expanded to a four-dimensional sphere since the axes are orthogonél
to each other. Figure 1 shows a 2D unit circle getting projected onto a mapping line. With all these
° projections the Euler parameter By is eliminated, since the mapping hyperplane normal is the B

axis. They are called symmetric projections since the principal angle range is symmetric about the '

zero rotation angle. Asymmetric stereographic projections are projections onto a hyperplane with




a normal other than the B axis, which do not have a symmetric principal angle range. The case

where the Euler parameter B, B; or B3 is eliminated is discussed later in this paper.

Placing the projection point on the B axis yields an even principal angle range about the zero
rotation point. The mapping line is placed a distance of +1 from the projection point. The
parameters are scaled by this arbitrary distance, so having a distance of 2 between the projection
point and the mapping plane would simply scale all the parameters by a factor of 2.

Keep in mind that the Euler parameters are defined in terms of half of the principal rotation
angle ®. The point (1,0) on the circle corresponds to a zero rotation. The point (0,1) corresponds
to a +180° rotation. Studying Fig. 1 it becomes evident that the reduced parameters go off to
infinity when a point on the circle is projected which lies directly in the plane perpendicular to the
By axis through the projection point. The two lines that need to be intersected are parallel to each
other, causing the intersection point to move to infinity. The corresponding principal rotation
obviously yields the angle at which the reduced set of parameters will go singular! By placing the
projection point at different locations on the Bg axis, the maximum principal rotation angle is
varied. If the projection point is outside the unit circle, no singularity will occur, but the projection
is no longer one-to-one. Some areas of the mapping will start to overlap in the projection plane.
Clearly this is not a desirable feature because of the ambiguity this lack of uniqueness would

introduce (given the projected coordinates, we cannot uniquely orient the reference frame).

The angle @y is the principal angle of rotation where the stereographic parameter vector {

encounters a singularity. This angle ®g determines the placement of the projection point a.

¢S
a=cosm &)

The transformation from the Euler parameters to a general set of three symmetric

stereographic parameters { is defined as:

B;

&

i=1,23 4

The condition for a symmetric stereographic parameter singularity, evident in equation (4), is

shown below.
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a=Bo=Cosi' ) (5)

If @ < 1 this condition is satisfied at an infinite set of orientations. If the projection point is on
the unit sphere surface, thena=-1anda singularity is only achieved at ® =+360°.

a_§T§+,ll +£T£(1 ~-a%

Bq= l+§r_ ©
-a+./1+§7t;(1-a2)
Bi = C,- ) .c;-c i=1,23
+

The inverse transformation from the general stereographic parameters { to the Euler
parameters B, is given in equation (6). This equation holds for both the symmetric and asymmetric
stereographic projections.

Since the Euler parameters are not unique, it is valid to rewrite equation (4) in terms of -B,.
For the general case these new stereographic parameters gs correspond to the mirror image of the |
Euler parameters and are generally not numerically equal to ¢ of equation (4). However, the
resulting vector {;S will describe the same orientation as the original parameters and are herein

referred to as the “shadow points” of ¢ and are denoted with a superscript S:

CS —Bi a Bi

i - —-By—a - Byta

)

Using equation (6) the shadow point _§s can be cxprcésed directly as a transformation of the

original parameters { and the projection point a as:

CS _ C[ —a+Jl+§TS(l—a2) }

a+2a_§T_§+,fl +fra-ad

®)

The fact that the shadow point vector _CS generally has a differeht behavior than the original {
will be useful when describing a rotation. The family of stereographic parameters generally has '

two distinct sets of parameters, corresponding to B(r) and -B (), which describe the identical
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rotation and are related to one another by equation (8).

The differential kinematic equations for § are found by differentiating equation (4).

. ﬂ.l Blﬁo
= - )
: Bo—a (B,- a)?
By making use of the differential kinematic equations of the Euler parameters [4] given as:
B [Bo—8y -B, B[ 0
ﬁ] = l ﬁl Bo .33 Bz (01 (10)
Bz 2 Bz ﬁ; Bo "B] 0)2
\_63 B3 _ﬁz Bl Bo (1)3

and the basic definition of the stereographic parameters given in equation (4), the differential
kinematic equations for the stereographic parameters can be found. Their general form is very
lengthy and not shown here due to space limitations. The most important special cases are
discussed below.

Viewing Fig. 1, it becomes evident that a set of three symmetric stereographic parameters
cannot have the singularity point moved beyond a principal rotation of #360°. Going beyond
+360° would mean finding a projection point that would map the entire unit sphere more than
once, i.e. not a one-to-one map onto the projection plane. Therefore the symmetric parameters are
better suited for regulator or “moderately large” departure motion problems, than for spinning

body or large angle maneuver cases.

Note that for the zero principal rotation, the asymmetric stereographic parameters are not

equal to zero. The projection of the Bo parameter onto f; = a + 1 is not zero because B is one at

the zero principal rotation.

Asymmetric stereographic parameters have a qualitatively different singular behavior from
the symmetric stereographic parameters. The Euler parameter Bg contains information about the
principal rotation angle only (i.e., the direction of ¢ does not affect Bg). Eliminating 3y during a .

symmetric projection causes the singularity to appear at a certain principal rotation angle,



.i.

independent from the principal axis of rotation ¢. Since for the symmetric projections, the zero
rotation point (1,0,0,0) lies on the By axis and the singularity occurs at +®g, we have a symmetric
range of nonsingular principal rotations {-®5 < ® < +®g} about the zero rotation, regardless of

the direction of e.

ph

B mapping
(B() B‘) line
ﬁi=a+1
Zero
o2 rotation

unit /

circle projection
point

Fig. 2. Dlustration of a Asymmetric Stereographic Projection onto Hyperplane
Orthogonal to f; axis.

For an asymmetric projection, one of the Euler parameters P, By, or B3 is eliminated. Each
one of these parameters contains information about both the principal rotation angle and the
direction of e. Therefore singularities will only occur at certain angles about the i-th axis
(corresponding to B;). Figure 2 illustrates an asymmetric stereographic projection where B; is
eliminated. All possible projections points a now lie on the B; axis, and the mapping hyperplane
perpendicular to B; is defined at B; = a+1. Since the zero rotation is no longer in the center of the
nonsingular principal angle range, the valid range of principal angles is non-symmetric. A
singularity will occur at ®g; or ®g,, where these two principal angles are unequal in magnitude.
Given a singular principal rotation angle ®g; which lies between +180°, the corresponding

projection point a is defined as:
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a= cos——s-1 (11)

The second singular principal rotation angle ®@g, is then found as:
g, = 2n- P, (12)

The transformation from Euler parameters to the corresponding asymmetric stereographic
parameters is the same as given in equation (4), with Bo and B; switched. A singularity now occurs
when B; equals a. If the projection point a lies inside the four-dimensional unit sphere, this may

occur at several orientations.

¢-sing = a (13)

Using equation (1), the condition for a singularity becomes equation (13), where the index i
stands for the B; parameter which was eliminated. Since the sine function is bounded between *1,
a singularity will never occur if |e] <a. If the projection point a is moved to the sphere surface,
namely to %1, then a singularity may occur with a rotation about the i-th body axis only! The
reason for this is evident in equation (12). Since a is +1 and the sine function is bounded within
+1, the only way equation (13) is satisfied is if |¢] = 1. Because ¢ is a unit vector, the other two
direction components must be zero if |e] = 1. Thus if the body is spinning about an axis other
than the i-th body axis, a singularity will never occur. Therefore these asymmetric stereographic
parameters are attractive for spinning body problems, where an object is rotating mainly about a
certain axis. The principal rotation angle is now not bounded as with the symmetric stereographic
parameters, but can grow beyond +360°. Simply choose the normal of the projection hyperplane

to be far removed from the rotation axis and place the projection point a on the four-dimensional

unit sphere surface and the probablhty of encountering a singularity is virtually nil.

For both the symmetric and asymmetric stereographic parameters, having the projection pomt
on the sphere surface means the singularity can only occur at two distinct orientations. If the

projection point lies inside the sphere, there generally exists an infinite set of possible singular

orientations.
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The inverse transformation from asymmetric stereographic parameters to Euler parameters is
the same as given in equation (6). These asymmetric parameters also exhibit the same shadow
point behavior as the symmetric parameters do with the same transformation given in equation
(8). Therefore, if a singular orientation is approached with the asymmetric stereographic

parameters, one can switch to the shadow point to avoid the singularity.
Classical Rodrigues Parameters

The Rodrigues parameters g have a singularity at ® =1 80°. This corresponds to a point on
the two-dimensional unit circle in Fig. 1 of (0,+1). The corresponding symmetric stereographic
projection has the projection point a at the origin and the mapping line at Bo = 1. It becomes
evident why the classical Rodrigues parameters must go singular at @ = +180° when describing
them as a special case of the symmetric stereographic parameters. The transformation ﬁom the
Euler parameters to the Rodrigues parameters g is found by setting @ =+180° in equationb (3-4).

The well known result is shown in equation (14) below.
i=1,23 (14)

The inverse transformation from the Rodrigues to the Euler parameters is found by using the

same Pgin cqixation (6) and is given as:

Bo = B, = —— i=123 (15)

The differential kinematic equation in terms of the classical Rodrigues parameters is given in

vector form as:

(16)

[Ty
"
N -
~
e
!
pa—
e
"y
+
ey
I
[
S’

An explicit matrix form of equation (16) is given below {4].
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l'*'q% 992~ 93 9193 Y 92| | 9|
.1 2 a7
9= 351a9,%9 1+4; 993-4||*2 )
a0 -9 Bt a 1+as |1
Using the definitions of the Euler parameters in equation (1), the Rodrigues parameters can
also be expressed directly in terms of the principal rotation angle ® and the principal line of

rotation ¢.
L1
g = ctng (18)

From equation (18), it is obvious why the classical Rodrigues parameters go singular at

+180°. For completeness the direction cosine matrix C is given in explicit matrix form [4]:

2 2 2
1+q,-g5—4q3 2(‘1]‘12"'43) 2(‘13Q1"‘12)
= e 2 2 2
CUper9) = —5 53| 2(019,-9) 1-91+22~% 2(%29:3+4) (19)
1+q;+q3+q; . 5 2 2
2(‘13‘11"“12) 2(‘12‘13"‘11) 1-q7-93+4q3

and in vector form [3]:

Clg) = —— (1 -g"pI+298 - 2(aD) (20)
l+q'¢g

Equation (20) and its inverse can also be written as the Cayley Transforrh [3;4,6]:
Clg) = U-(@) U+ @)~ (21a)
@ = (-0 dU+o™ | (21b)

and the kinematic differential equation shown in equations (16-17) has the “Cayley” form [4]:

I . "
41q) = 5~ (3D (@] (1- (@) 2)
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The tilde matdix (4] is defined by —{gx ...} as given in equation (23).
8
0 —g5q;
(4 = 9 0 -q (23)
-2, 9, 0
[
Let the vector gs (defined with -p) denote the shadow point of the classical Rodrigues
parameters. Solving equation (6), or starting with equation (14), the following definition for the gs
® is found.
-B; B;
Y m = = i =1, 24
q, _Bo Bo q[ { 21 3 ( )
Equation (24) shows that for the Rodrigues parameters, the shadow point vector components
are identical to the original Rodrigues parameters, with identical values and properﬁes. Therefore
the shadow point concept is of no practical consequence in this case; the classical Rodrigues
¢ parameters are unique!
(Bo:B)
. ; " lai=df
° Bo
»\
(’50"(33) mapping
line
o .
Fig. 3. Original and “Shadow Point” Projection of the Classical Rodrigues Parameters.
Having the projection point a at the origin causes this elegant, degenerate phenomenon.
P Figure 3 illustrates why both sets of Rodrigues parameters are identical. The classical Rodrigues .

parameters are the only symmetric stereographic parameters which exhibit this lack of distinction
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between the original parameters and their shadow point counterparts, as is evident below. This

proves simultaneously to be an advantage and a disadvantage.

Modified Rodrigues Parameters

The modified Rodrigues parameteis presented by Modi and Tsiotras move the projection point
to the far left of the unit sphere at (-1,0,0,0) and project the Euler parameters onto the hyperplane
at By = 0. This pushes the singularity as far away from the zero-rotation as possible. The
parameters will now go singular at ® =1360°. As Tsio&as points out, this new set of parameters
is able to describe any type of rotation except a complete revolution back to its original
orientation. Carrying out the stercographic projection with @g = +360°, the transformation from
"Euler parameters to the modified Rodrigues parameter vector o and the inverse transformation are

given as:

i=1,23 (25)

o
)
Q

-—1—
1+d'o

By i=123 (26)

Using equation (1) again, the modified Rodrigues parameters can be written as [2]:

27

<)
fl
L5
g
SR

This formula immediately reveals the singularity at a principal rotation of +360°, double the
range of the classical Rodrigues parameters. It is interesting that ® = 0° and ® = #360°
correspond physically to the same body orientation. This fact has both theoretical and practical

consequences in “avoiding” the singularity.

s () @eor]

The kinematic differential equations in terms of ¢ are given in equation (28). They are very
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similar to equation (16) except for one extra term. This terms makes the equations only slightly

more complicated, but not any more non-linear.

The explicit matrix form for the elements of equation (28) is given as [2]:

1 (l+02l—c§-—c§) 2(6,0,~ ;) 2(6,0;+0) |[o,
g=7| 2(a0,+0y) ( ~ci+02-03) 2(0,0;-0) ||@; (29)
2(0,0,-6,)  2(0,0,+0) (1-0i-0;+03)|*

The direction cosine matrix in terms of the modified Rodrigues parameters [2] can be shown to
be: |

4(c-c2-c3) +X*  80,0,+40,E 86,0, —40,%
1
C@)=——7 80,0,-40,% 4(—a%+o§—o§) +32 80,0, +40,Z 30
(1+570) R (30)
86,0, +40,% 80,0,~40,Z  4(-01-0C,+03) +E
£=1-0'o
or more compactly in vector form as [3]:
4(1-6"0) - -
co) =128 29 5 2@’ 31)
(1+de) = (1+d9

The modified Rodrigues parameter vector ¢ is transformed into classical Rodrigues

parameters as:

- ()

Naturally, this transformation goes singular at a prinéipal rotation of +180°, because [|o| — 1
and || gj -« as © — £180°.

Comparing equation (27) and equation (18) it is immediately evident that both the classical
and the modified Rodrigues parameter vectors have the direction of the principal rotation vector ¢,

but a different magnitude. The transformation from modified to classical Rodrigues parameters
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shown in equation (32) can be rewritten in terms of the principal angle of rotation ®.
@
w3
g=—59 (33)
1

_ Using the image set - (1) of Euler parameters, the shadow point of the modified Rodrigues

parameter vector ¢ is found.

== (34)

Contrary to the classical Rodrigues parameters, these modified Rodﬁgues parameter shadow
points are not numerically equal to the original parameters. While they generate exactly the same
direction cosine matrix, they are not generally a mirror image of one another. While generally
& #—g, note that everywhere on the unit sphere o7o = 1 that, in fact, ® = —¢ = —B,. This simple

observation has significant practical consequences.

(Bo-By)
Bo
\ unit
(-Bo-B) circle
~———_ mapping
line
o

Fig. 4. Original and “Shadow Point” Projection of the Modified Rodrigues Parameters.

The shadow points ¢® have some interesting properties. They go singular at the zero rotation
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and go to zero at a £360° principal rotation! This is the exact opposite of the qualitative behavior
of ¢. The reason for this behavior becomes evident in Fig. 4. At a zero rotation, the shadow point
will intersect the mapping line at infinity. At a rotation of +180° the shadow points will be the -
negative of their original values. We note that & is distinguished from g merely for book-keeping

@ purposes. Transforming initial conditions (from [C] or B) for any given case, could initiate motion

on either g (1) or &’ (1) . , Lo

Using ¢ together with the shadow vector &’, it is possible to describe any rotation without

° singularities and with only three parameters, but with one discontinuity at the switching point. If
the original o (r) trajectory approaches the singularity at @ = £360°, the vector g(r) can be

} switched to the shadow trajectory ¢® (1) . This transformation is very simple as is seen in equation
1 (34). Rather than waiting until |g (:)] -« or |o® (9] —» - to switch, however, the most convenient
switching surface is the g’g = 1 sphere; the unit sphere which corresponds to a principal rotation
of £180°. The Euler parameter B, is zero everywhere on this sphere. This causes the shadow point
to have the same unit magnitude as the original with the transformation being ¢ = —o. Thus

Py whenever o (¢) exits (enters) the unit sphere, & (1) enters (exits) at the opposite side of the sphere.

Fig. 5. Illustration of the Original and Shadow Modified Rodrigues Parameter.
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Switching at the o’ = 1 surface can be very elegantly accomplished when finding o by
extracting the Euler parameters from the direction cosine matrix. Simply keep B,20 and the
resulting set of parameters will always have oTo<1 [1]. Switching on the B = O sphere (where
do = 951 o® = 1) keeps the combined set of original and shadow points bounded within the unit

sphere.

This bounded behavior of the combined set is illustrated in Fig. 5 above. The grey line
represents the g (s) trajectory and the black line the corresponding shadow trajectory of ¢* ().
The motion starts out at a zero rotation with the grey line at the origin and the black line at
infinity. After a while the principal angle of the object grows beyond 180° and the grey line exits
the unit sphere. At the same time the shadow parameters (black line) enter the sphere at the
opposite position. If the body rotates back to the original orientation, the shadow parameters
approach zero as the original parameters go off to infinity. Any tumbling motion would give rise

to a qualitatively identical discussion of g (1) and .
Example of Asymmetric Stereographic Parameters

A sample set of asymmetric stereographic parameter vector 1 is constructed by eliminating

the Euler parameter B; and setting a equal to -1. Adjusting equation (4), the vector 0 is defined as:

35

Using equation (11,12) the singular principal rotations about the positive By axis become gy
= -180° and ®g; =+540°. As mentioned earlier, the diregtion at which a singular orientation is
approached is important with asymmetric stereographic parameters. Here a negative principal
rotation of 180° about the first body axis causes a singularity. A positive principal rotation of 180°
would yield an identical physical position, yet causes no singularity. Only after a +540° does this
representation go singular, even though this position is the same as +180°. This non-symmetric

principal angle range is due to the fact that the zero rotation point (£1,0,0,0) does not lic on the By

axis.

Differentiating equation (35) and using equation (10), the differential kinematic equation for "

vector 7 is found to be:
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1 (-1-+ni+n)  2(m;-10y) —2(n,2n2+2n3) 2 @,
1=2| 2my-mmy)  2MpNy+my) (- LMWy (9 (36)
2mmg+ny)  G-ni-niend  20m-nay |10
Note that equation (36) contains no transcendental functions in it and is similar qualitatively to
equation (29). Because 7 is an asymmetric stereographic parameter vector, however, there is less
symmetry in the matrix. This lack of symmetry is linked with the absence of a symmetric
principal rotation angle range. Therefore, equation (36) cannot be written in a more compact

vector as was the case with the symmetric stereographic parameters.

The direction cosine matrix in terms of n can be found to be:

am?-ni-nh) +X  Sqmy+dn,E  -8my My +4An,E
cm = ——1-1—2 -8 +4n,T 4 (n% +n§ - 11§) -3 gn,n,+4n,T 37)
DD | gomyeanE  sugmy-anE  4@i-miend) -2
z=1-1n

Analogously, asymmetric stereographic parameters could be derived by projecting onto a
hyperplane orthogonal to-the B, or B3 axis, or actually any non-fy axis. All these parameters

would have a similar singular behavior.

To illustrate the use of the asymmetric stereographic parameters n for describing a spinning
body, a sample motion was generated. The motion was achieved by forcing the following 3-1-3

Euler angle time history upon the body. '
= - in2s) = 38
0,0 =1 8,(n = (1-cos2)3 8,(1) = (sin20) 7 (38)

The body is mainly spinning about the third body axis while oscillating about the other two.

Therefore the stereographic parameter vector y will never go singular, since a singularity can only

occur with a pure rotation about the first body axis.
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5.00 1 i :I c‘ix ‘: i
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I | [y 1 i --- M)
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R
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Fig. 6. Spinning Body Description with Asymmetric Stereographic Parameters.

As Fig. 6 shows, the asymmetric stereographic parameters 1 are smooth and continuous at all

time. The sample motion shown performs one and a half revolutions without encountering any

singularity.

Legend
==l
— ol
—  Iq!

Fig. 7. Comparison of Symmetric and Asymmetric Stereographic Parameters.

To compare the asymmetric with the symmetric stereographic parameter description for this |

spinning body, the polar plot in Fig. 7 was generated. The magnitude of each parameter vector is
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plotted versus the pdncipal rotation angle ¢. As expected, the symmetric stercographic parameters

go singular at cectain ¢, while the vector n is bouanded at all times.

Figure 8 shows the time history of the pracipal rotation angle ¢ for this spinning body
mancuver. Because of the oscillations about the ficst and second body axis, ¢ gets reduced ducing
some pottions of the mancuver. Because the magnitude of the symmetrc stercographic

* parametecs depends only oa the principal rotation angle, these “backing up™ phases are not visible
on the polar plot in Fig. 7. However, the magnitude of the asymmetric stercographic parareters

depends on both the principal rotation angle and the direction of the pdancipal rotation axis. This

L ] explains the more uregular features of the |n| plotin Fig. 7.

600.00
® | 450,00 ===t me g

300.00f " iToooos

-+

al rotation angle

150.0077

princip

0.00

Fig- 8. Pancipal Rotation Angle Time History of Spianing Body Maneuver

While some loss in symmeury and elegance of the equations results, asymmetric sets of
stereographic parameters are able to represent the motion of a spinning body without switching
between the shadow and the original parameters, like the modified Rodrigues parameters would
requice. In (7] Tsiotras develops a set of orientation parametecs which are also well suited for the
spinning body problem and have a low polynomial degree nonlinearity in their kinematic

o equations. They differ in form 1o the asymmetdc stereographic parameters, but are similar in
behavior.
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Globally Stable Control using Modified Rodrigues Parameters

The combined set of modified Rodrigucs parameters and theic shadow counterparts lead
themselves very well for regulator type control design. Adopting the switching sucface g'g = 1

has a surpdising beaefit in designing coatrol laws. Coasider the dynamics of a generally tumbling
rigid body. The Lyapunov function

V(e.0) = 3070+ 2Klog (1 +9'9)

(39

will not have any discoatinuities at the switching surface, since both the oaginal ¢ and us
shadow g point have unit magnitude there! V(w.g) is by inspection only zero if both @ and o
are zero. As a consequence, it is easy to establish a globally stable Lyapunov controller with a
three rotation parameter set which never encounters a singularity! J in equation (39) denotes the
3x3 inerda matrix in body axis. The scalar K is a positive feedback gain. For this nonlinear

regulator type problem, the external control torque ¢ is found by setting the time derivative of
equation (39) equal to

V=P

(40)

with P being a positive definite matrix, and using equaton (28) and Euler's equation of
motion:

Jo = - (0lJo+y

Gy

to solve for the torque . Using the logarithm of ¢’g in equation (39) results in a globally
noalinear control law ¢ which is linear in g (2].

¥ = -Pu-Kg+ (0o

(42)

The coatrol law in equation (42) is valid for any arbitrary departure motion g. Coaventional
sets of three paramicters would encounter singular ocentations. Another problem with
conventional parameter sets is that they have no inhecent mechanism to accommodate tumbling

situations when the object has pecformed a principal rotation beyond £180° away from the desired
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state. When this happens, it would probably be desirable to “help” the object complete the
® revolution, rather than to attempt to force it back the way it came. The only set of parameters that
can “almost” handle this scenario is the classical set of Rodrigues parameters. They fail because
they go singular near the “up-side-down™ orientation at ®=+180°. The combined set of g and o,
however, are well behaved up to and well beyond ® = +180°. Switching at ¢’g = 1 makes it

[
possible for the control law to let the object go past the “up-side-down” orientation and then let it
rotate back to the origin the short way, as we illustrate in an example below.
The angular velocity o feedback is required for global stability, and the P matrix should be
e . . . . -
chosen to achieve satisfactory damping of the nonlinear oscillations.
The results of a single-axis spin maneuver using the control law in equation (43) are
presented. The inertia J used was 12000 kgmzz the feedback gains were chosen as K=300 and
® P=1800. Initial angular velocity was +60%s. Figure 9 below shows the time history of the
principal angle of rotation. The object clearly spins beyond the “up-side-down” point of ®=+180°
and then returns back to the origin by continuing the motion and completing the revolution. The @
° feedback sufficiently dampens the system to prevent excessive oscillations about the origin.
'g'o 180
= [
o 90
° A | E——
g o =
S 90
El /
y=
e A« -180 .
0 20 . 40 60 80 100
time [s]
Fig. 9. Principal Angle of Rotation of Spin Maneuver.
L 4

The angular velocity, shown in Fig. 10, decreases steadily from +60°/s and converges to zero.

Where the @ goes beyond 180° there is a discontinuity in the slope of ©.
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angular velocity o [deg/s]
W
S
A

0 20 40 60 80 100
time (s]

Fig. 10. Angular Velocity of Spin Maneuver.

The corresponding external control torque is presented in Fig. 11. A large torque is demanded
initially because of the large initial angular velocity . As @ decreases, s0 does the torque. There
is a discontinuity where the modified Rodrigues parameter switch from the original to the shadow
point trajectory. This is because the position error ¢ reversed its sign, driving the object towards
the origin about the other 'way. However, the control torque does not jump to a negative value
because of the o feedback. It keeps the torque positive; i.e. the controller is still slowing down the |

spin, even during the switching.

1900
aN
: \
| ) 1400
i z
> 900
-3
| o N
| S  400- -
\ B
| -100— :
0 20 40 60 80 100

time [s]
Fig. 11. External Control Torque of Spin Maneuver.

The position error and the associated torque discontinuity due to switching to the shadow

|
|
\
‘ trajectory may be troublesome for highly flexible bodies. However, this is easily addressed in
| practice by replacing the instantaneous switch by a smooth one. Also, introducing a simple digital
i
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filter will effectively smooth out such jump discontinuities.

It is conceptually easy to introduce a reference trajectory and design analogous tracking-type
feedback control with, using the methods of [4], global stability guaranteed. This is useful in

achieving global control shaping, and also to permit selection of feedback gains sufficiently large
to reject disturbances.

Conclusion

A new family of stereographic parameters has been presented, including the general
transformation from and to the Euler parameters. The general stereographic parameters are not

unique and have a comesponding set of shadow point parameters whose singular behavior is

different from the original parameters.

The classical Rodrigues parameters are a special set of the symmetric stereographic
parameters where the original parameters and their shadow points coincide. The modified
Rodrigues parameters are also a special case of the symmetric stereographic parameters. They
have the largest non-singular principal angle range of +360°. Their associated shadow points are
singular at the zero rotation and zero and @ = +360°. This combined set of stereographic

parameters and their shadow point parameters are able to describe any rotation without

encountering a singularity, but with one discontinuity.

The asymmetric stereographic parameters have their singular orientations defined both by an
axis and a principal rotation angle. The two singular angles do not have equal magnitude as with

the symmetric stereographic parameter. Asymmetric parameters do allow rotations beyond +360°

and are therefore attractive to spinning body type problems.

The globally stable control law presented implicitly “knows™ when an object has rotated
beyond £180° from the target state, and to let it complete the revolution back to the desired state.
This control implicitly seeks out the smallest principal rotation angle to the target state. This

control law was developed by making use of the modified Rodrigues parameter and their shadow
points.

Acknowledgments

The authors are pleased to acknowledge several fruitful discussions with Panagiotis Tsiotras




and Malcolm Shuster regarding this topic.

References

(1

2]

B3]

4]

(5]

(6]

(7]

MARANDI, S.R., and MODI, V.J., “A Preferred Coordinate System and the Associated
Orientation Representation in Attitude Dynamics,” Acta Astronautica, Vol. 15, 1987,
pp-833-843.

TSIOTRAS, PANAGIOTIS, “On New Parameterizations of the Rotation Group in Attitude

Kinematics.” IFAC Symposium on Automatic Control in Aerospace, Palo Alto, Califomia,
Sept. 12-16, 1994.

SHUSTER, M.D., “A Survey of Attitude Representations,” Journal of the Astronautical
Sciences, Vol. 41, No. 4, 1993, pp. 439-517.

JUNKINS, J.L., and KIM, Y., Introduction to Dynamics and Control of Flexible Structures,
AIAA Education Series, Washington D.C., 1993.

JUNKINS, J.L., and TURNER, J.D., Opfimal Spacecraft Rotational Maneuvers, Elsevier
Science Publishers, Netherlands, 1986.

CAYLEY, A., “On the Motion of Rotation of a Solid Body,” Cambridge Mathematics
Journal, Vol 3, 1843, pp. 224-232.

TSIOTRAS, P, “On New Parameterizations of the Rotation Group in Attitude Kinematics,”
submitted to IFAC 94 Symposium on Aerospace Control, 1994.

139



SDXA] “UOLIDIS 232]]0))
K184241U) WXV SOXI]

$661 ‘CI-0I 4290120
Su1122 ] [0MUYIJT, [PNUUY ISTE
20U210§ Suriaour3us Jo (121208

£181201U) WPV SPXI[
SuL122u18UT 200ds042Y Jo JudullIDda(q

supyunf ] uyof

140

mumﬁ/dGJ@G m)?»&um\»W _Gu.w)zpﬁ{;.a 0\ §>0.10/>>\
Pwo mu.wé:u)duug\/\ -Gua.mmG-U WS, mul&uﬁomu
S Lty § m(ao.w&uuwo.r Q -GJ»OWOJJO



0"SHS

Gm.(..a.m.ﬁw ?%0 >ul>~\v/‘u)ﬁ~
soA3eS [ _ SP( . Q e ¥
”N5mGN=00 -5&&)\_mam§0 >/>>\

O_5Gé~uw Luuummdﬁu#l.«\
| “udam.-o.)uw . O\.J nn—v IH2eex? >/>>\

)ﬂ&d.g m/POMJG-POJG:OU N)M&U</10L,m

&&13?)0‘0_00 3 ,—QNmGﬂo. B O

m»ﬁ@gmmﬁudgnuﬁd_u@

141



SYADULDY] mﬁﬁiuzcw |

sauip1qissod p suoyvonddy
SINS2Y MIN dULOS
utiofsuvd] £a14v)

S2OLUD P [PUOSOYLA() UXU O] SUOYDZIDLIIUIL)

cor SUDIIUUDID] SINSLIPOY ‘S1]UUDAD] L]
UOND2LIDINGIY <=> SUONDIOY odioutid

**§2010Y) 2IPUIPLO0)) X suonaalosd puo3oyi(Q

SOIUDYIIP [DIISSD])) WOLf SDIP] FULOS

UOLIDALIOJA] PUD UOHINPOLIU]

142




rsas

A..h.ma.m\w.._u)»ﬁ 1.@5&0_0 PMe soyMoVEEW MY mgm~0_0>m jo sessop

Nmtfq.~ L.N‘(—»O Q» 1‘@&&@ mﬂe\lmuur Qmu).—,ﬂ m00.1 &‘Q»RQ Mﬁxg OF u/POMJMN;O

./?OM&O/;\ .—GIPOJ.&GJO\N—\ vPGN‘M.—‘O;\ mg‘ij&.um@.T vPOnw ».:GMUNQWN
omuﬂﬁl\f@1&.oou %0 NUMOJO N)d\.ﬂ um.wmc)ﬁlgﬁorﬁxlo 0& J.-SU.N%%M1 ma. &O u.—c.rog\

mmgo‘wﬂmﬁsr cﬁ@iﬂvﬁ’% O @)64 O .N NNM. @mo.(—u neh QO uJ—FGgN\N—\

2/(ogo — gt + 10 -) =

€[/n + W ImEL = €O 7/(1gtm - 0o + £ 1o +) = °f
/in + o0l =W 7/(Ygdem + ¢dlm - 0gdlm—) = ﬁm_
o/ + fotoli= 1o 7/(gEo - o - 1glo-) = O

:£119019A LvnSuy fo spuauoduto)) “30YlIQ P S12joUDIDJ (;uorutagonb,) sopnyg YL II 39S,

uoissaLdxa snoSojpup = ¢
e/(e-1) =& Y- =T /(S -T) =4 24D SOUDLDILIUL Y} 2D )
u015s24dxa SNO30]VUD =

— €1/¢n + guisgP( €4 — 1) + Mutshsos €4 — Muishsoog ,uis Ne E?:.a. +

Quis

ﬂ ¢p/in + hsoohg(U—-1) + MursguisO(e + 1) + Ms0ogsorgd(e 1) - 9:.22.8%.3% NL Toogsor
quis

— 1j/1n + duishg(l4—1) + msooguishd(l4—1) - Musgsoogd( 14+ 1) — \_Geucguo:waue CH Husesos =AM

:5a18uy Japngy €-1-€ Waissvl) YL ] 13§

kv@).—om 0& FQ%@.PQ $0> .1,—503 mgo.w»“;w@ .—GMJJPN.PQQQMT “wo
mﬂ@m ..&.I)@d“)doswu \4:0“&)?»0‘71' 03& @)ﬁ& H—O ‘/dnu.w)a 2\ «‘OHMM@—)O



z07s3s

I + fo anjpauasia 2y 03 Suipuodsa.i09
[H] fo101924ua812 up 29 JSNUL @ <=

(%) €9
(Bor- {3
Io | -]
Inyj wﬁsbtou oM ‘0S

15 =ty — 195 U
YT JOY ULL] S, AI]NH 0} %:.NMEQQUG w:% v

gUy €do
(ofio= (e}
[Uy - L149p

EYtUs + CYuTha + lylvs = 2

£qt92 + ¢qia + Iql4a = 3
: @ 403024 11un Jo “uoduiod "30Y1LQ
(@) au1] ppdiourid v ynoqo () uoyvIOL

218u1s v £q uoyvIU2LLIO (ULl L1DLJ1GID UD 0 UOUDIUILLO [DIIUL
10431940 up woLf 1ySnoiq aq uvd (auvif fot) {poq pisLL y

W10y J UoyDI0Y [pd1outld S, 4Nz

4

144




¢ ° ¢ ¢ g o L ° °
rsss
w m 1 2 .m H:@t& = m “"

_ i Em fo4lo-lo-1 (lo+folo)g (t0-f010)Z 1, 2k 's fosiof P D b suagawnand
UTF =P TSV (lo-toto)y fo-lo+lo-1 (fo+W0l0)T | == (2031 onaonb | = L 0g+1 L€ L oy PO
iLlJ| (wo+olo)y  (f0- wlo)y fo-fo- o+1 I 10 M Joouvus .. .:n._ =10 . “

m ¢ Td+ €4 C—Cald , .
reoy| ¢ y ¢ [HUT M Josiof m Luno= | | suprouning
W= |9 -l S+] Ul 1= tpi | onpaponb =D i Go e U ansupoy
ol eaty €u—tulu m& +1 L4 Joonu d/'d =4 '
" o g - tf d] 4 P
m €M : oo ! i Zsoo=90g
o olg-og oz [ S @ U e
auou | 1% u&u (|2 - °% 71 " uoyounf | = T A da[ns
: 0 Zd_ 1 ! g0 | oupaponb | uslo=1¢ | |
w ¢g- d- 'd- log) i ;@ P
~ L rem guishsoo  guishuis 02 0500 A [ Mo Jo sa18uy
ui=g | ||| esoous— gsoomsoo o |=—=19p i swomounf|=D i (RO} L Ei s
L Mso2 uis 0 ¢) i Lpusosuvi m P
0 o o= . A P SUISOD)
ouau - 0 o |=@ ‘[=D2;0 VO-=DJ | [#]=0 "0 61 uonoadiq
H W - 0 m m m _m . v
Sa1j1Iwn3uLs uonpnba (o1yuadaff1p ovuIau} T Sou1S00 U0NIALIP *  SVUIPL00I T
e N * L] N . .“ . .# L ] . 0“ .“ *

S2oLUDI £XE [PU0Z0YILQ JO SUOYV2LIPUDID

[Apog p131y [DI1SSV]) Jo sanpuado.g 21doIsOLIVN

145




€s3s

‘096 [ 42149S1H “7 YD ‘S4oaNUDIA [uoNvI0Y Q\Sumoc&w NSS:NQ “r daudng puv ‘suyung 5

4 < — € «_C_ I
289 $00 = 550%% C s = 1gf |
T ¢ T z
j:a, uls = o qipS09¢ 500 = 0 :s918up aopnyg £-1-€ Y} wodf
UOUDULLOSUDA] Y] SD YONS ‘sorgiadosd nfasn 4210 Kuvul 24D 2431 ]
o[ 9 w-w) [ @ro o @) [ ]
N g-og s egle_|9| W0 o W=z |9
oz - 9 Ig|l _m_V gfl - 0 o] I
0 eg— 2g— I 0g. cm.& of)LEw - W~ o= 0 08

D UMM 2q UDD SUOHNDS [DYUAJ1P dYDWIULY Y] PUD

(o4 20)§ =g (- T=H  reguzgo 1909 (gog- 9T (Yod+ e
(o4 180) = 61 (0= 19) 1= | (1gog+ equgye fg-Fd+ fg- 90 (9%0-td'DT = 10)
(T80 + mmuvvlm@m@ Aamulmmw = 1¢0g Awmoalmm_ﬁvm Amaom.*.maévm mu ma Nm+mu
:w?..&?-:,wnma
£q uaA1S ST X1LUDW FUISOI UONIDAIP YT JDYT 3. MOYS UDI 201

0=!
umdw H usu ﬂmamguw fm...:@.@ud h.mnwgwuoa
m

b b

suonuLap (94, 1) SA2IMg SUINPOLIU]
S.1970WDIDJ (UOIULIIDN()) JIJNF]

146




T .m.mm [ ‘VVIV “T YD ‘Saanioniig a]1quxafd Jo 1043u00 pup sOTUDUL( X WY puv [ ‘SULUNL 4
- € Lyt €4%4 T— €aTdT |
- AR I+ €40 T ggm s
TBV Ly — €utu mx+ﬁ €L+ Ul | ==
I
o | T+ Ed 4 €1 —Calu Mx+~ | 4

SO UM 2q UDD SU0lPND2 [VYUILIYIP SYDUIULY Y] PUD

i CI T4 — €4TU L+ €107 ]
¢+l - L T (Wt A +sd+ L+ T

AC+§N.&N -l -1 (81— UL)T < ﬁ

| (u—tal)g (S U)T G T

=[0]

£q U2418 S1 X1IDUL 2UISOI UOHIUP Y} JDY] 3 MOYS UDI oM
Z T og

I sD d| 270U ‘—upja=d A0 |§ 9 = =1y
AT ¢ P SV oo & |41 &= o 13 7 d

SUONIULDP SINT1IPOY IONPOLIUT

S.1090uDIDJ (101994 SQq1D)) SINSLIPOY

147



5§83

- fo+lo—jo-T (lo+ €0%0)7 (To—£010)T ]
Tew (lo-¢toto)y fo-fo+i0-1 (fo+ olo)t
| (w+tolo)y  (fo-1010)T mb..mb;mb+f

D UPNLIM 2q UDD SUoYypnba [P1UALIP OHVUIULY Y] PUD

(fo+lo-lo-)p+,(00-1) fotog+ (0,0-1)lop- f0log+(0,0-1)%0p
totog+(00-1)lop  (o-Yo+jo-)y+,(00-1) logt (0,0-1)%0p-
| folog+(0,0-1)W0p- 20108 +(0,0-1)%0p (fo-to-j0)p+,(00-1).

£q U218 $1 X1IDUL UISOD UOIIAIP Y} JDY] MOYS UDI I

148

uonpIuaLL0 10o15Kyd auns ayy a2121uD.I0d d — puo ¢ w1 100f
2y 01 Sutpuodsaliod ‘S101024 O Jo s395 oMy a4p 249y 10Y] 2OLON W

oﬂu_..ﬁulN

UT T P SV o0  [O] 10U .W:@ﬁmnm A0 ,.Mluzatmm g

=0

su212upivd 2] 20MPOLIUL ‘SDIOLS [ PUD IPOJA SUIMO]]O

S1219UWDIDJ SINSLIPOY PIYIPOA




® ® ° ® ® ® ® L L e ®
ssis c661 VVIV “T YD ‘Soanpondig 2]qixa]s] Jo [04juod puv sotupul(q ‘X ‘wiry pup °f ‘sunyunf

JUE]  *J0249Y] 9S494Ul J1] PUD X1IDUL JUISOO UOIILIP 2yl 10f
uonpnba sidjaupind SaNILPoy [VIISSV]I Y] $2I0412U23 K]2JVIPIULUL]

0 M w7
la — 0 €4 =4 = @
| - (A Sunyv1 10y

,.@28 cxg ayy 10f ‘Kfi1aa 03 D2 S11] jsuonpnba nfyynvaq a1 asaYJ
() ©-D-(0+N=0 () (©@-D,-(0+D=0
¢) ~O+DO-D=0 Q) (O+DO-D=D

SUOYDULIOSSUDL], dSIAU] SUOYDULIO[SUDLL, PIDMLOY]

:spjoy diysuoivjad SuIno]]of ay uayy X1jvu ILLIIUUAS MIYS UXU
paivjal v awpu ;0 - = O 12] puv XLIDU 1DUOS0YI0 UXU UD 2]OUIP D) 1]

:(uiofsuna ] £214v)) £a14v)) 01 NP 4 UI2L09Y] Suimoqjof ay1 4ap1suo)

; sotuwukp £poq prSi uvyy 1a1y30 Suouios o
a2p.1oUd8 S1Y1 JO J]D SI0P MOF] ;IDYM OS 1AM

149



asss . ‘€661 ‘VVIV “T YD ‘Sa4nondig ajqixa|d Jo 1o43u00 puv sorupuk(q ‘X WLy puv [ SuRunf o

;40f p0o08 suoypnba [PUOISUIULP 12y 81Y 2521} 240 JDYM JNq 201U en S@S

s1219uin40d SaNS1APOY Y3 10f Suba 2y 03 [PIYUIP] ‘9o0f U1 240 3 ASDI
p1oads gxg ayi 40f p1oy suorypnba auivs asayy oY} 51424 0] Asva S11]

O-1,-O+D = -(O+DO-D =0
_(@0+DO©-D =0

(0-1-(0+1I)

249YM pUD

(0 -1)0(0 iv.m.u 0
HIAQ INv@ ﬁlAQ +1)T=0 q

201DALIP Uy SI1 pup O X1gDUl L219up0d I1UJUUMAS-MIYS Y} OF
paivjaL 2q upd () xrvul £3100194 ADINSUD PIZNDIIUIS, U} 249YM

N.II..Q,N.U a.Uchlull...U

01 SUIPL02ID 24]0A2 SIILFDUL [DUOSOYLLO UXU JDY] 3 MOYS UDI I

SUOYDIOY UXU J0o SOYVUIU]

150



§7sas

o 1dunx?d Uy "dANIDLID PUD JUDSI[I SWIIS _uon1sodulodap [p430ads Suiliva

ouig, StyL “(1)0 puv (1) 40f ‘suba mau ojut (1)d 4of ‘uba (p1ua42fj1p ays
WLLOfSUDA] UDD I “‘UY) ‘UOYDNDI oyua4affip v sa1SHDS (3)d 1 4vmonivd uy

(1)0 puv (1) st 395

21DUIPLO0D  [DUWIUIU, 2A1JODIID L1oa v uayy ‘Surliva iy s1(1)d = d J1 9o110N
O-D-O+D = -O+DO-D =0

©-0D-(0+D =-(0+DO-1) =D

‘utiofsuvay £214v) ay;
Suisn xX1pU 103024UIS19 Y] a214239upand Upd I "2[qU]IVAD S1 $101024U2312
o111 Jo suo1102.41p Jo uoyvIUISILdal L23unind puiuiu v 1Y 29110U JaYLiN

1 J0 $.401924u2812 SutpuodsaLiod ayy 240 YoIYM

suwnjoo ayi £q (Kjpuopunpad) painidpo s1 saxp [pdiourid ay1 Jo UOHDIUILLO ]

pup “\J Sanpauasia ay} £q paunydpo Kjanbun s1 J fo advys, ayj vy} 9OHON
[=0 0 ™" ‘Wivp=yv " OVO=d

uo1sodulooap [p410ads ayj svYy J X1vul aargisod d143ouuks £iv4j1qin Uy

S20LUDPY ILPWWAS UxU Jo UOYD2LIIPUWDID] [D13I9dS

151



o | | [ Konidaou0d 2411004330 240 £y g Jo sanjpauadia
pawadai 4vau K1100d 24vYyaq OS[Y £IY [ j24V (a3 puv ‘Assaut 300] oul suba asay],

iy — [
NA.\.kQ,\. aﬁum&\u{ ”b@ AO“%@

_0+D0O-D=0 © ((0+DO-D =D 1“9---©0D1=0
, “ C
ovo=d ‘0dp=Y ‘(©-Do0+I) 7" ;
"uLLof 2yl 24vY JNq 24142p 0} SNOIPI] 24D suopnba RULIJIp pIULLOfSUDI] Y]

'O JO Stuawa]a

tounstp z/([-w)u.ays smd \ Jo spuawaa u ayy ‘7/([+U Ju o1 M woif sa1qoiiva

Jo # a1 2ompas upd oM Uyl ;0- = O Jo 19f v sv O ssaidxa 03 uLiofsuvay £14p)

oY1 95N upI aMm 22ulS “(1)\J puv (1)D 4295 UDI oM ‘7OVO = (1)d :uoyvuLofsuv.]

21DUIP1000 D SUINPOU] “rd=d ySnoys uaaa ‘suba fJip ;u a4v 249y} 1Yl 29HON

[fiss uagfo s1 ‘uba s1yj ‘IV1ALY-10U ST XLVUL fop ‘sod “wiks v (1)d L0f uoynjos ayJ
0< M='M 0=M+d'Md-Vd+dV+d

suopnbs 121y XD

Y3 S1 UOHDWINIS? [DWAO PUD [04JU0D jpuigdo w1 “uba ffip SuLndd0 Apyuanbaif v

uoypnbr V221 XUV Jo UOYDULIO[SUDL] :apdwnxiy

152



orsis

o=/

g Jo spuaua]a Jouls1p q m:v: =woayjadp {¥g 1} ‘1= NQ w . Mvw 502 = 0g .E&mssﬁ

IN..::..G =g . domg
4%d =g <, 9-= g (g-1°9) (g +1%9) = | _(g+1°)(@-1°) =D | @~ m
0= ‘W=D -(A+D) = (W+D (W-1) =§ mmw%%u |

m L SU2jUDIDJ

- b0 L DOy ‘PO

S—=5 fS=Do(s+D = (S+Do(S=D =0 | .m.m.ﬁ.uam Pou PN
[=0,0 ‘“©O-D,-0+D=,(0+D©O-D=0 _.A.w:%? |

m 1SUDJPUDID ]

&@IH .AQINV ﬁlA@ +]) = ~IA@ +NVA®|~V =9 oﬂ\.ﬁ“ k sanSLipoy

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

SaU1502

O—-—=0 ‘1= D | ‘0 —-=D uon22.1p S2UISO)
L= - L ) iy L uonsaa(q
SUOTD2[DIIUDS 3] uonwIdIaTul mmm

SAILUDN [PU0Z0YIL() JO SUOYD2LIIIIUD D]
[puorsuduiiq-u Jo sayLadodd 1doIsoLIVH

153



rsas

;;0p 03 s8utyy unf maf v aul U] dof ‘v 12 @?@D nok yuvyJ

-+ ‘subg] 70Ty JO SUONN[OS ‘SIOLILIAL JYSIOA ‘SIOMIEIA SOUBLIBAOD)
XLUDJA 2ULfo(J 2417150 UXU JO UOYD2LJIUIDID] 10f yovo.sddy

SOOLIJEW UXU JOJ , SA212UDADd L9]NF, JO UOUD21DI2U])

SOOI UXU JOJ SUJIUIDID] SINSLPOY PIYIPON 21! Jo uoyv21p1auan)
SI[NSOI AU OM],

SU219UDIDJ SINEIUPOY Sa2MDIoUILH <=> WIOJSUBIL], s A9[Ae)
Sa01LIVUW [PUO0S0YLIO UXYU O] SUOYD2DIIUIL)

154

-+ “3[QISBOJ SMB[ [013U0D S[qEIS A[[qO[3 JO UOTIBALISp

soupnSus fo uoypuul]e <=> SUONENDS [ENUSIHIP pazue[ndal

suonyvnba paut] K4vau atouw <=>  A[[euoneindwod JAISUUT SS9
:$a)BUIPIo0)) uoneloy [edrourid Jo soSejueApy

sIojowRIE ] “POY PIYIPOIA ‘SIoloueled soN3HUpoy ‘siojouweled o[y
sa1pUIP1007) UoHVI0Y [pdioulid Kpog pISry [edIsse)
saoLyput uodaload (puo3oyrio £xg Jo SUOPDZLIIPIUDID]

SYADUWLIY SUIPN]IUO,)




Principal Rotation Representations
of Proper N x N Orthogonal
Matrices

Hanspeter Schaub
Panagiotis Tsiotras
JohnL.J unkins

Submitted to International Journal of Engineering Sciences
December, 1994

155



Principal Rotatibn Representations
of Proper NxN Orthogonal Matrices

Hanspeter Schaub
Panagiotis Tsiotras
John L. Junkins

Abstract

Three and four parameter representations of 3x3 orthogonal matrices are extended to the gen-
eral case of proper NxN orthogonal matrices. These developments generalize the classical Ro-
drigues parameters, the Euler parameters, and the recently introduced modified Rodrigues param-
eters to higher dimensional spaces. The developments presented are motivated by, and signifi-
cantly generalize and extend the classical result known as the Cayley transformation.

Introduction

It is well known in rigid body dynamics, and many other areas of Euclidean analysis, that the
rotational coordinates associated with Euler’s Principal Rotation Theorem [1,2,3] lead to espe-

 cially attractive descriptions of rotational motion. These parameterizations of proper orthogonal

3x3 matrices include the four-parameter set known widely as the Euler (quaternion) parameters
[1,2,3], as well as the classical three-parameter set known as the Rodrigues parameters or Gibbs
vector [1,2,3,4]. Also included is a recently introduced three parameter description known as the
modified Rodrigues parameters [4,5,6]. As we review briefly below, these parameterizations are
of fundamental significance in the geometry and kinematics of three-dimensional motion.
Briefly, their advantages are as follows:

Euler Parameters: This once redundant four-parameter description of three-dimensional rota-
tional motion maps all possible motions into arcs on a four-dimensional unit sphere. This accom-
plishes a regularization and the representation is universally nonsingular. The kinematic differen-

tial equations contain no transcendental functions and are bi-linear without approximation.

Classical Rodrigues Parameters: This three parameter set, also referred to as the Gibbs vec-
tor, is proportional to Euler’s principal rotation vector. The magnitude is tan(¢/2), with ¢ being

the principal rotation angle. These parameters are singular at ¢ =% and have elegant, quadrati-




cally nonlinear differential kinematic equations.

Modified Rodrigues Parameters: This three parameter set is also proportional to Euler’s prin-
cipal rotation vector, but with a magnitude of tan(¢/4). The singular orientation is at ¢ =+2r, dou-
bling the principal rotation range over the classical Rodrigues parameters. They also have a quad-

ratic nonlinearity in their differential kinematic equations.

The question naturally arises; can these elegant principal rotation parameterizations be ex-
tended to orthogonal projections in higher dimensional spaces? Cayley partially answered this
question in the affirmative; his “Cayley Transform” fully extends the classical Rodrigues parame-
ters to higher dimensional spaces [1,2,7]. A proper NxN orthogonal matrix can be generally para-
meterized by a vector with dimension M = %2N(N-1). Only for the 3x3 case is N equal to M. Any
proper orthogonal matrix has a determinant of +1 and can be interpreted as analogous to a rigid
body rotation representation. This paper extends the classical Cayley transform to parameterize a
proper NxN orthogonal matrix into a set of M-dimensional modified Rodrigues parameters. Fur-
ther, a method is shown to parameterize the NxN matrix into a once-redundant set of
(M+1)-dimensional Euler parameters.

The first section will review the Euler, Rodrigues and the modified Rodrigues: parameters for
the 3x3 case, generalized later in this paper to parameterize the proper NxN orthogonal matrices.
The second section will review the classical Cayley transform resulting with the representation of

“a proper orthogonal matrix using the Rodrigues parameters, followed by the new representation

of the NxN orthogonal matrices using an M-dimensional set of modified Rodrigues parameters;
and finally, a new representation of the NxN orthogonal matrices using an (M+1)-dimensional
Euler parameters.

Review of Three-Dimensional Rigid Body Rotation Parameterizations

The Direction Cosine Matrix

The 3x3 direction cosine matrix C completely describes any three-dimensional rigid body ro-
tation. The matrix elements are bounded between +1 and possess no singularities. The famous

Poisson kinematic differential equation for the direction cosine matrix is:
C=-[®]C (1)

where the tilde matrix is defined as

)



The direction cosine matrix C is orthogonal, therefore it satisfies the following constraint.
cTc=cct =1 (3)

This constraint causes the direction cosine matrix representation to be highly redundant. In-
stead of considering all nine matrix elements, it usually suffices to parameterize the matrix into a
set of three or four parameters. However, any minimal set of three parameters will contain singu-

lar orientations.

The constraint in equation (3) shows that besides being orthogonal, the direction cosine matrix
is also normal [8]. Consequently it has the spectral decomposition

C=UAU" 4)

where U is a unitary matrix containing the orthonormal eigenvectors of C, and A is a diagonal
matrix whose entries are the eigenvalues of C. The * symbol stands for the adjoint operator,
which takes the complex conjugate transpose of a matrix. Since C represents a rigid body rota-

tion, it always has a determinant of +1.

- The Principal Rotation Vector

Euler’s principal rotation theorem states that in a three-dimensional space, a rigid body (refer-
ence frame) can be brought from an arbitrary initial orientation to an arbitrary final orientation by
a single principal rotation (¢) about a principal line é [3].

b

'_ . .............. E“"""".

Fig. 1: Euler’s Principal Rotation Theorem.
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With reference to Fig. 1, the body axis b; components of the principal line € are identical to

the spatial components projected onto ;.
ey '
{ez}=é=C-é ©)

Therefore ¢ must be an eigenvector of the 3x3 C matrix with a corresponding eigenvalue of
+1. If the 3x3 C matrix has an eigenvalue of -1, the matrix represents a reflection, not a proper ro-
tation and the principal rotation theorem does not hold. In this case the det(C) would be +1. The

principal rotation vector ¥ is defined as:
Y=02 ©)

Let us now consider the case where a rigid body performs a pure single-axis rotation about the
fixed &. This rotation axis is identical to Euler’s principal line of rotation €. Let the rotation angle

be ¢. The angular velocity vector for this case becomes:
& = ¢é )
or in matrix form: |
* [@] = §[e] ®
Substituting equation (8) into (1), one obtains the following development.

dc _ do

= =g LeC
ac _ .
E =- [e]C
C=e ©)

The last step follows since the [£] matrix is constant during this single axis maneuver. Due to
Euler’s principal rotation theorem, however, any arbitrary rotation can always be described instan-
taneously by the equivalent single-axis principal rotation. Hence equation (9) will hold at any in-
stant for an arbitrary time-varying direction cosine matrix C. However, ¢ and & must be consid-

ered time-varying functions. Using the following substitution
[¥] = ¢le] (10)

equation (9) can be rewritten as [2]
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C=e =Y (- 17" an
n=0"

Instead of using an infinite matrix power series expansion of equation (11) to find C, the ele-
gant finite transformation shown below can be used [2]. That is, the evaluation of e 11 does not
require the spectral decomposition of [¥], but can be written directly in term of ¥ itself. Unfortu-
nately, this transformation only holds for the 3x3 case. A general transformation for the NxN
case is unknown at this point, at least as far as the authors know.

e = Jcos — [€]sing — &&T (cosp— 1)

12
o=l 2=7/0 (

To find the inverse transformation from the direction cosine matrix C to [¥] , the matrix loga-
rithm can be taken of equation (11) to obtain

(1 =—logC= Y~ (I-C)" (13)
n=1

Using the spectral decomposition of C given in equation (4), the above equation can be rewrit-

ten as
[7] = — log(UAU*) = - U(logA) U* o (14)

where calculating the matrix logarithm of a diagonal matrix becomes trivial. Since all eigen-
values of an orthogonal matrix have unit norm, the matrix logarithm in equation (14) is defined
everywhere except when an eigenvalue is -1. Generally, equation (14) will return a [¥] which
corresponds to a principal rotation angle ¢ in (-180°,+180°). Note however, that when C has ei-
genvalues of -1, equation (14) does not return a skew-symmetric matrix. The transformation
breaks down here for this singular event. The geometric interpretation is that a 180° rotation has
been performed about one axis (leading to one positive and two negative eigenvalues of C), which
is the only rotation not covered by the domain of equation (14).

The principal vector representation of C is not unique. Adding or subtracting 2% from the prin-
cipal rotation angle ¢ describes the same rotation. As expected, equation (11) will always yield
the same C matrix for the different prinéipal rotation angles, since all angles correspond to the
same physical orientation. However, the inverse transformation given in equation (14) yields only
the principal rotation angle which lies between -180° and +180°.

As do all minimal parameter sets, the principal rotation vector parameterization has a singular
orientation. The vector is not uniquely defined for a zero rotation from the reference frame. The
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principal rotation vector parameterization will be found convenient, however, to derive useful rela-

tionships.

The Euler (Quaternion) Parameters

The Euler parameters are a once-redundant set of rotation parameters. They are defined in
terms of the principal rotation angle ¢ and the principal line components ¢, as follows:

Bo=cosg—, [3;=e,-sin% i=1,2,3 (15)

They satisfy the holonomic constraint:
B3 +BT+B3 + 3 =1 (16)

Equation (16) states that all possible Euler parameter trajectories generate arcs on the surface
of a four-dimensional unit hypersphere. This behavior bounds the parameters to values between
+1. However, the Euler parameters are not unique. The mirror image trajectories P(t) and -B(t)
both describe the identical physical orientation histories. Given a 3x3 orthogonal matrix, there
will be two corresponding sets of Euler parameters which differ by a sign. The Euler parameters
are the only set of rotation parameters which have a bi-linear system of kinematic differential

equations [1], other than the direction cosine matrix itself, as follows

Bo)  Bo —B1 —B2 —Bs7 g

Byl _1{B1 Bo —Bs B ||
[3; “2|B2 B3 Bo -P {“’i} un

5,) LBs-B B Bl

It is also of significance that the above 4x4 matrix is orthogonal, so “transportation” between

,’s and B,- ‘s is “painless”. The direction cosine matrix in term of the Euler parameters is [1,3]

B2 +Pp3 —P3—B3 2(B1B2+BoBs) 2(B1P3 —Pob2)
[Cl=| 2(BiB2—PBoB3) B3B3 +P%—B5 2(B2PB3+Bob1) (18)
2(B1Bs +BoB2) 2(B2B3 —PoB1) BE —BI - B3 +B3

The Euler parameters have several advantages over all minimal sets of rotation parameters.
Namely, they are bounded between %1, never encounter a singularity, and have linear kinematic
differential equations if the w,(t) are considered known. All of these advantages are slightly offset

by the cost of having one extra parameter.
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The Classical Rodrigues Parameters

-

The classical Rodrigues parameter vector § can be interpreted as the coordinates resulting
from a stereographic projection of the four-dimensional Euler parameter hypersphere onto a
three-dimensional hyperplane [6], with the projection point at the origin and the stereographic
mapping hyperplane at BO =+1. Asdiscussed in [6], it follows that they have their singular orien-
tation at a principal rotation angle of ¢ = £180° from the reference. Their transformation from
the Euler parameters is

q,~=§;— i=1,2,3 (19)

Unlike the Euler parameters, the Rodrigues parameters are unique. The g; uniquely define a
rotation on the open range of (-180°,+180°) [6]; as is evident in equation (19), reversing the sign
of the Euler parameters has no effect on the q; Using equation (15), the classical Rodrigues pa-
rameters can also be defined directly in terms of the principal rotation angle and the principal axis
components as

gi = e,-tan% i=1,2,3 (20)

It is apparent that § has the same direction as the principal rotation and the magnitude is
tan(¢/2) . The singular condition of ¢ = £180° is evident by inspection of equation (20). The
kinematic differential equation for the Rodrigues parameters contain a quadratic nonlinear depen-
dence on the q; They can be verified from equations (17,20) to be [1-4]

oy [ R ae-5 a6+a]g
{‘72}=§ Qa+e 1+ oa-a {mz} (1)
g3 3

BN -9 pp+qa 1+43

Notice that the above coefficient matrix is not orthogonal, although the inverse is well be-
haved everywhere except at ¢ = +180° where |§| — o. The direction cosine matrix in terms of
the Rodrigues parameters is [1-4]:

1+@ -3 -2 2qa2+q3)  2(q1943-92)
2qq1-93) 1-@+¢ -G 2qe+q1) (22)
2Apq+q2) 2@pqa-q1) 1-¢2-g3+43

C@) =
1+q%+q%+q§

The Modified Rodrigues Parameters

The modified Rodrigues parameter vector & is also a set of stereographic parameters, closely
related to the classical Rodrigues parameters [2,4-6]. The modified Rodrigues parameters have
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the projection point at (-1,0,0,0) and the stereographic mapping hyperplane at BO =0. This projec-
tion results in a set of parameters which do not encounter a singularity until a principal rotation
from the reference frame of £360° has been performed. Therefore they are able to describe any
rotation except a complete revolution £360°. Their transformation from the Euler parameters is

o; = lf‘ i=1,2,3 (23)

While the classical Rodrigues parameters have a singularity at [30=0 (¢ =£180°), the modified
Rodrigues parameters have moved the singularity out to a single point at B0=-1 (¢ ==360°). Fig-
ure 2 below illustrates these two singular conditions. Since the classical Rodrigues parameters are
only defined for —180° < ¢ <+ 180°, they can only describe rotations on the upper hemisphere
of the four-dimensional unit hyper-sphere where BO>0. However, the modified Rodrigues parame-
ters can describe any rotation on this hypersphere except the point [30=-1. Therefore the modified
Rodrigues parameters have twice the nonsingular range as the classical Rodrigues parameters.

4D Unit Hyper-Sphere

with B%)+[521+B§+Bz3=1 Bo=+1

RS
Q
origin

Bp=-1 Bo=

(Modified Rodrigues (Rodrigues Parameter
Parameter singularity point) singularity surface)

Fig. 2.: Nllustration of the Singular Conditions of the Classical and
the Modified Rodrigues Parameters.

Like the Euler parameters, the modified Rodrigues parameters are not unique. They have an
associated “shadow” set found by using -B(t) instead of B(t) in equation (23) [5,6]. The transfor-

mation from the original set to the “shadow” set is [2,5,6]

d:;f—é i=1,2,3 24)

The “shadow” points are denoted with a superscript S merely to differentiate them from ;.
Keep in mind that both Gand &° describe the same physical orientation, similar and related to the

case of the two possible sets of Euler parameter and the principal rotation vector. It turns out that
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the modified Rodrigues “shadow” vector &% (1) has the opposite singular behavior to the original
vector &(¢). The original parameters have differential kinematic equations which are very linear
near a zero rotation and are singular at a £360° rotation. On the other hand, the “shadow" parame-
ters have differential kinematic equations which are linear near the +360° rotation and singular at
the zero rotation. [6] Using equation (15), the definition for the modified Rodrigues parameters in
equation (23) can be rewritten as [4]

o; = e;tan% (25)

Equation (25) is very similar to equation (20), except for the scaling factor of the principal ro-
tation angle. The singularity at +360° is evident in equation (25), and small rotations behave like
quarter angles. All three parameter representations must possess a singularity. This set max-
imizes the nonsingular principal rotation range to £360°. The following differential kinematic
equations display a similar degree of quadratic nonlinearity as do the corresponding equations in

terms of the classical Rodrigues parameters [4-6]

1+03-03-03 2(0102-03) 2(0103+G2) |
2(02061 +03) 1-02+03-05 2(6203-01) {(02} (26)
2(0361 —=62) 2(0362+01) 1-0F —03+03

I
I
Nk

Note that the coefficient matrix of the differential kinematic equation is not orthogonal, but al-
most. Multiplying it with its transpose yields a scalar (1 + 676)2 times the identity matrix. As
far as we know, this is the only three parameter representation possessing this elegant property;
further attesting to the uniqueness and importance of the modified Rodrigues parameterization.
This almost orthogonal behavior allows for a simple transformation between the ©; and the &;

. 4(c} -o3 —0}) + 22 86,07 +403Z 80103 —40,%
C(8) =(1—+aT—-)7 80,61 —4032  4(-07 +03-03)+X? 80203 +401X @7
80301 +4G,Z 8030, — 4612 4(- o} -0} +03) +2?
£1=1-676

The direction cosine matrix is shown above [6,9]. It has a slightly higher degree of nonlinear-
ity than the corresponding direction cosine matrix in terms of the classical Rodrigues parameters.
Parameterization of Proper NxN Orthogonal Matrices

A proper orthogonal matrix is an orthogonal matrix whose determinant is +1. Some aspects
of parameterizing proper NxN orthogonal matrices into M-dimensional Rodrigues parameters
have been studied recently by Junkins and Kim [1] and Shuster [2]. Keep in mind that M=
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1LN(N-1). These classical developments, generalizing the Rodrigues parameters to NxN proper
rotation matrices, date from the work of Cayley [7] and are included below for comparative pur-

poses with the new representations.

Any NxN orthogonal matrix abides by the constraint given in equation (3). This equation is an
exact integral of equation (1), as can be verified by differentiation of equation (3) to obtain

cTcecTe=0 (28)

The € matrix defined in equation (1) can be shown to satisfy this condition exactly. Substi-

tute equation (1) into (27) and expand as follows
(- [®]C) C+CT (- [®]C) =0
(- CT@17)C-CT[®IC=0
CT (- @) -[®])C=0

The above statement is obviously satisfied if [®] is a skew-symmetric matrix, e.g.
[@] =—-[®]T. Consequently equation (1) will generate an NxN orthogonal matrix, as long as
[®] is skew-symmetric and the initial condition C(¢=0) is orthogonal. This observation allows
for the evolution of NxN orthogonal matrices to be viewed as higher dimensional direction cosine
matrices, somewhat analogous to the motion generated by a “higher dimensional rigid body rota-
tion,” and also suggests parameterization of of higher dimensional rigid body-motivated rotation

parameters.

Higher Dimensional Classical Rodrigues Parameters

Cayley’s transformation [7] parameterizes a proper orthogonal matrix C as a function of a

skew-symmetric matrix Q; these elegant transformations are

C=(I-Q)I+Q) =+ (-0Q) (29a)
o=U-O)(I+C)t=u+0C)lg-c) - (29b)

The Cayley’s transformation is one-to-one and onto from the set of skew-symmetric matrices
to the set of proper orthogonal matrices with no eigenvalues at -1. Notice the remarkable truth
that the forward and inverse transformations are identical. The transformation in equation (29b)
fails if any of the eigenvalues of C are -1, because the /+C matrix becomes singular and is thus
not invertible. The Cayley transformation in equation (29a) produces only proper orthogonal ma-
trices C with det(C)=+1. This can be verified by examining the determinant of C as shown below.
Using equation (29a), det(C) can be expressed as
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_det(I-Q)

det(C) = det(I— Q)det((/+0)™") = det(I+ Q)

Since the Q matrix is skew-symmetric, it has purely imaginary complex conjugate pairs of ei-
genvalues of the form i\, Let R be the corresponding eigenvector matrix to Q. Multiplying and
dividing the above equation by det(R) yields

det(C) = SetR)det(I - 0)/det(R) _ det(R)det(] - Q)det(R™!)

det(R)det(I+ Q)/det(R) ~ det(R)det(I+ Q)det(R™")

det(R(I-Q)R™') _det(I-ROR™!)

det(C) = det(RU+Q)R')  det(I+RQRY)

where the ROR™! term is a diagonal matrix containing the eigenvalues of the Q matrix. Since
the determinant of a matrix is the product of all the eigenvalues, the above can be written as

b (1-i)(1+ihy) TT(1+3F)

det(C) = Je=l(1+ikj)(1—i7»j)_ 1 (1+27)

=+1 ged

where p is the number of nonzero (imaginary) eigenvalues of Q. The above statement proves
that all C matrices formed with equation (29a) are indeed proper matrices. For the 3x3 case, let
the Q matrix be defined as the following skew-symmetric matrix:

0 -¢3 ¢
Q=[é]=[ gs O —41] (30)
-2 q1 O

After substituting equation (30) into (29a), it can be verified that resulting C matrix is indeed
equal to equation (22). Cayley’s transformation (29) is a generalization of the classical Rodrigues
parameter representation for NxN proper orthogonal matrices [1,2], while the Q matrix gener-
alizes the Gibbs vector in higher dimensions [2,10].

Using the [¥] matrix defined in equation (14) the Q matrix can be expressed as follows [2]:
Y -1
0=—tanh() = (¢ - #)(e¥ 4 o7H) 31)

The above transformation can be verified by performing a matrix power series expansion of
equation (31) and substituting it into a matrix power series expansion of equation (29a). The re-
sult is a matrix power series expansion for the matrix exponential function as expected from equa-
tion (11). However, equation (12) cannot be used to calculate the matrix exponentials, since this
equations only holds for the 3x3 case. Note the similarity between equation (31) and (20). Both
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calculate the Rodrigues parameters in terms of half the principal rotation angle!

The differential kinematic equations of the C matrix were shown in equation (1), where the
skew-symmetric matrix [®)] is related to Qand @ via the kinematic relationship [1]

(@] =2(/+Q)"' QU-Q)! (32)

or conversely, O can be written as

0=+ QI6)I-0) (33)

The equations (32-33) are proven to hold for the higher dimensional case in reference 1. For

NxN orthogonal matrices, [®] = - [®]7 represents an analogous “angular velocity” matrix.

Higher Dimensional Modified Rodrigues Parameters

As is evident above, the modified Rodrigues parameters have twice the principal rotation
range as the classical Rodrigues parameters. It can be shown that the higher dimensional mod-
ified Rodrigues parameters also have twice the nonsingular domain as the higher dimensional

classical Rodrigues parameters.

To find a transformation from the NxN proper orthogonal matrix C to the modified Rodrigues
parameters, let us first examine what happens when taking the matrix square root of C. Let the
square root matrix W be defined by the necessary, but not sufficient condition

WW=C (34)

Obviously, for the general NxN case, there will be many W matrices that satisfy equation (34).
Using the spectral decomposition of C given in equation (4), the spectral decomposition of W can

be written as
W=U/AU" (35)

Since the C matrix is orthogonal, all the eigenvalues in A must have unit magnitude. Keep in
mind that the A matrix in equation (35) is diagonal and that the matrix square root is trivial to cal-
culate. Since taking the square root of an eigenvalue with unit magnitude results in another ex-
pression with unit magnitude, the W matrix itself is unitary, or orthogonal if all entries are real. It
turns out that W is always real and orthogonal, as long as no eigenvalue of Cis -1. If an eigen-
value of C is -1, then W has complex values and is a unitary matrix. The product of all eigenval-
ues of C is the determinant of C and must be +1 since C is proper. For even dimensions of C, the

eigenvalues must all be complex conjugate pairs for the det(C) to be +1. For odd dimensions, the

1€7

[
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extra eigenvalue must be real and +1 in order for the matrix to be proper.

Each time a square root is calculated, there are two possible solutions. If the eigenvalue in
question is one of the complex conjugate pairs, then the sign does not matter for W to be a proper
matrix. If the matrix dimension is odd, then the root of the extra eigenvalue must be +1 for W to
be proper. In the 3x3 case there is only one complex conjugate pair of eigenvalues. Hence only
two W matrices satisfy the above conditions. This is to be expected, since any three-dimensional
rotation can be described by two principal rotation angles which differ by 2, one of which is pos-
itive and the other is negative. To make the choice of W unique, let us select all the roots of the
complex conjugate pairs to have a positive real part.

Since the W matrix is orthogonal, with one exception, it has a principal line and angle asso-
ciated with it. If the C matrix had an eigenvalue of -1, the same numerical problems arise as we
encountered with finding the principal rotation vector. Multiplying W with itself in equation (34)
simply doubles the principal angle, but leaves the principal line unchanged. Therefore W repre-
sents a rotation about the same principal line as C, but with half the principal angle. This pro-
vides conceptually elegant interpretations of the square root of C as defined above..

For three-dimensional rotations, the simple restriction on the square roots of the eigenvalues
can be shown to restrict the principal rotation angle to satisfy —180° < ¢ <+ 180°. This choice is
consistent with many numerical matrix manipulation packages and their computation of a square
root of a matﬁx. Let the j-th complex conjugate eigenvalue of C be denoted as &% | where the
the phase is — 180° < 6; <+ 180°. If the dimension N is an odd number, W has the structure

.0
e 0 0 0 0]
.0
0 7 o 0 0
w=U-| ¢ o 0 0lyp (36)
ON-1
02 0 0
Oar
0 0 0 0 5
L0 0 0 O 0 +1d
If the dimension N is even, then W is
et 0 0 0 ]
0 ez« 0 0 .
W=U . 0 o |-U 37
0 0 0et 0
0 0 0 0 ei¥d

Using the parameterization given in equation (11), the matrix W can also be written directly in
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terms of the principal rotation matrix [¥] as follows

|
W= e-2ﬂ (38)

This solution for W can be verified by substituting it into equation (34). Comparing equation
(38) with equation (11) it becomes obvious that the W matrix has indeed the same principle rota-
tion direction as C, with half the principle angle. Since, for three-dimensional rotations, there are
two possible principal angles for a given attitude, there are two possible solutions for equation
(38). Again, by keeping || < 180°, the same W matrix is obtained as with the matrix square root

method discussed above.

Remember that the modified Rodrigues parameters have a nonsingular range corresponding
to |¢] < 360°. Since W is the direction cosine matrix corresponding to half of the principal rota-
tion angle of C, the resulting nonsingular range of the W matrix has been reduced to |¢] < 180°.
This is the same nonsingular range as the classical Rodrigues parameters. Therefore the Cayley
transformations, defined in equations (29a,b), can be applied to W. Let S be the skew-symmetric
matrix composed of the modified Rodrigues parameters, similar to the construction of the Q ma-
trix in equation (30). Then the transformation from W to S and its inverse are given as:

W=-S)I+5)" = I+8) I-5) (392)
S=(I-WYI+W) ™ =I+W)1(-W) (39b)

Using equation (39a) and (34), a direct transformation from S to C is found.
C=(I-8)U+8)2=U+5)*(-5)* (40)

This direct transformation is very similar to the classical Cayley transform, but no elegant di-
rect inverse exists (i.e. we lose the elegance of equation (29b); no analogous equation can be writ-
ten for S as a function of C). This is due to the overlapping principal rotation angle range of
+360° causing the transformation in equation (40) not to be injective (one-to-one). Since the clas-
sical Rodrigues parameters are for principal rotations between (-180°,+180°), they have a unique

representation and the Cayley transform has the well known elegant inverse.

However, an alternate way to obtain the S matrix from the C matrix is available through the
skew-symmetric matrix [¥] defined in equation (14).
- ¥\ _ -y o gyt :
s=-tanh(“1) = (¥ - e H)(F +e7F) 1)

The transformations given in equation (41) can be verified by performing a matrix power se-
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ries expansion and back-substituting it into equation (40). Note again the similarity between equa-
tion (41) and equation (25). The principal rotation angle is divided by four in both cases.

Either the W or the [¥] matrix can be solved from the proper NxN orthogonal C matrix to ob-
tain the corresponding S matrix. Neither method is as elegant, however, as equation (29b) of the
Cayley transformation. The method using the [¥] matrix has the advantage that [¥] is found by
taking the matrix logarithm of the eigenvalues of the C matrix as shown in equation (14). The
uniqueness questions do not arise here as in the matrix square root method because solutions are
implicitly restricted to proper rotations with |¢| < 180°. Both methods produce the same results
using, for example, the matrix exponential and matrix square root algorithms available as MAT-
LAB or MATHEMATICA operators. Note that both the classical and the “updated” Cayley trans-
form have numerical problems when transforming a proper orthogonal matrix C into a

skew-symmetric matrix if C has eigenvalues of -1.

Since each set of modified Rodrigues parameters has its associated “shadow” set [6], it is usu-
ally not important which S parameterization one obtains, as long as at least one valid S matrix is
found. Once a parameter set is found, either the original ones or the “shadow” set, it is trivial to
remain with this set during the forward integration of the differential equations governing the evo-
lution of S.

The differential kinematic equations for S are not written directly from C as they were with
the classical Cayley transform. Instead W is used to describe the kinematics of the NxN system.
The relationship between W and S is the same as between C and Q. Therefore the same equations
can be used. The differential kinematic equation for W is:

W=- [Q]W (42)
where the skew-symmetric matrix [®] is:
[Q] =2(1+8)18U-5)" (43)

or conversely S could be defined as:
.1 ~
S=§(1+S)[Q](1—S) (44)

Equation (34) can be used during the forward integration to obtain C(t). The time evolution of
C in terms of W and [Q] is:

¢ =-[Q)ww-w[Q]w=-[Q]Cc-w[Q]w (45)

Equating equation (45) and (1), the direct transformation from [Q] to [®] is:
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(@] = [Q] + W[QIWT (46)

To verify that equation (46) yields a skew-symmetric matrix [®] , the definition of a

skew-symmetric matrix is used:
(@] = - [6]7 =~ ([Q]+W[Q]w')"
(@1=- (0] - (WY (] W
(@] = [Q] + W[Q]WT qed.

Although this new parameterization is somewhat more complicated than the classical parame-
terization into M-dimensional Rodrigues parameters, the complications arise only when setting up
the parameterization in terms of S. Once an § matrix and a corresponding W matrix have been
found, this method is no different from the classical method. The important improvement is that
the range of possible principle rotations has been doubled over the classical M-dimensional Ro-

drigues parameters.

A Preliminary Investigation of Higher Dimensional Euler Parameters

The classical Euler parameters stood apart from the other parameterizations, because they
were bounded, universally nonsingular and had an easy-to-solve bi-linear differential kinematic
equations. All of these attractive features were only slightly affected by the cost of increasing the
dimension of the parameter vector by one. These classical Euler parameters are extended below

to higher dimensions, where they will retain some, but not all, of the above desirable features.

The Rodrigues parameters and the Euler parameters are very closely related as seen in equa-
tion (19). They are identical except for the scaling term of Bo. The classical Rodrigues parame-
ters have been shown to expand to the higher dimensional case where they parameterize a NxN or-
thogonal matrix C [1]. Analogous to equation (19), they can always be described as the ratio of a
once-redundant set of parameters.

N(N-1)

Bi .
i — 5 = 1’ 9Dy eeey = 4
qgi Bo i 2,3,...M > 47
The skew-symmetric matrix Q in equation (29a) can be written as:
1
Q=—2_B (48)
Bo

where B is a NxN skew-symmetric matrix containing the numerators B; of Q. For the three

dimensional case, this matrix is the “vector" part of the classical Euler parameters |31, [32, [33, and
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has the familiar structure

0 -B B2
B= [ Bs 0 - [31:\ (49)
-8, B O

Substituting the transformation relating Q to {BO’BI""’BM}’ as given in equation (48) the Cay-
ley transform of equation (292) results in the following

C = (BoI- B)(Bol +B)™"

C(Bol+B) = (Bol-B)
(I-C)Bo-(I+C)B=0 (50)

Equation (50) represents an NxN system of linear equations in {BO,B 1""’BM}' Let the
[Nzx(M+1)] matrix A represent the linear relationship between the Bi.

Bo
a-|Prl=o 1)
Bum
Clearly the set of all possible higher dimensional Euler parameters spans the kernel of A. We
know that the M Rodrigues parameters are a minimal set to parameterize the orthogonal NxN ma-
trix C. By adding the scaling factor Bo, a once redundant set of parameters has been generated.
Even though there are N? linear equations in equation (50), the dimension of the range of A is
only M. The problem is still under determined. The dimension of the kernel of A must be one,
since only one additional term was added to a minimal set of rotation parameters. The solution

space is a multi-dimensional line through the origin.

Multi-Dimensional
Unit Sphere

Fig. 3: Solution of the Higher Dimensional Euler Parameters.
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After finding the kernel base vector, an infinite number of solutions still exist. Another con-
straint is needed. Let us set the norm of the higher dimensional Euler parameter vector to be

unity. This concept is illustrated in Fig. 3 above.
B+ B} + -+ PR =1 (52)

Equation (52) is the higher dimensional equivalent of the holonomic constraint of the classi-

cal Euler parameters introduced in equation (16).

Two solutions are found scaling the base vector of the kernel of A to unit length. Just as with
the classical Euler parameters, any point on the multi-dimensional Euler parameter unit sphere de-
scribes the same physical orientation as its antipodal pole. Therefore the higher order Euler pa-
rameters are not unique, but contain a duality. This is exactly analogous to the classical case.

This duality does not pose any practical problems, except under one circumstance discussed

below.
C = (BoI-B)(Bol+B)™" = (Bol+B)™" (Bol - B) (53)

The inverse transformation from higher order Euler parameters to the orthogonal matrix C is
found by using Q from equation (48) in the classical Cayley transform. The result is shown in
equation (53). Using a B, as shown in equation (49) for the three-dimensional case, in equation
(53) results in the same transformation as given in equation (18). Observe that the inverse trans-
formation has a singularity when Py is zero. This singularity is a mathematical singularity only.
Contrary to the Rodrigues parameters, the higher order Euler parameters are well defined at this
orientation. After an appropriate skew-symmetric matrix B is constructed and carrying out the al-
gebra in equation (53), a closed form algebraic transformation is found

For the 2x2 case, the B matrix is given by

il

B=| gl ‘g‘] (54)

Using the B defined above in equation (53), the 2x2 direction cosine matrix C is:

_[B5 =BT 2BoBo

222|200 s%—s%] e

The 2x2 C matrix contains no polynomial fractions and is easy to calculate. To find the direc-
tion cosine matrix for the 3x3 case, use the B matrix defined in equation (51) in equation (53).
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Bo(BZ +B3 -B2-B2) 2Bo(BiB2+BoB3)  2Bo(BiB3 —BoB2)
2Bo(B1B2—-PoB3) Bo(BZ—-PB2+B2-B3) 2Bo(B2B3 +BoB1)
2B0(B1B3 +BoB2)  2Bo(B2B3 —BoB1) PBo(B3 B3 B3 +p3)

1
G5 = B+ B + B3 + )

After making the obvious cancellations and enforcing the holonomic constraint equation, the
well known result is found which represents the 3x3 direction cosine matrix as a function of the
classical Euler parameters as given in equation (18). This classical representation contains no

polynomial fractions and no singularities, just as was the case with the 2x2 system.

For dimensions greater than 3x3s, however, the algebraic transformation contains polynomial
fractions. The nice cancelations that occur with a 2x2 and a 3x3 orthogonal matrices do not occur
with the higher dimensions. This might have been anticipated, because [2] it is well-known that
quaternion algebra does not generalize fully to arbitrary higher-dimensional spaces, and the ele
gant classical Euler parameter results are essentially manifestations of quaternion algebra. To

find Cays in terms of the higher dimensional Euler parameters, we define the 4x4 B matrix as:

Y
_{ B 0 =B B

Bet=\_ps By 0 P 9
Be B2 By O

and substitute it into equation (53), this leads to

BZ(B3+P3+P2+P3—P2-P2-P2) -8  2Bo(Bo(B2Ba + B3Ps + PoBs) + B13)
11 2Bo(Bo(B2Ba +B3Bs —BoBs) —B18)  P3(BZ + P2 —PB3 — B3+ B3 + B3 - BZ)-&* ..
Al 2Bo(Bo(BoBs + B3Bs — B1Ba) —B29) 2Bo(Bo(B1B2 — BoB3 + BsBs) — Bad)
2B0(Bo(—BoBa —B1Bs — B2Bs) —B38)  2Bo(Bo(B1B3 +PoB2 —PaPs) —Bsd)
2Bo(Bo(— BoBs +B3Ps — B1Ba) +B28)  2Bo(Bo(BoBs — B1Bs —B2Bs) +P3d) 7
 2Bo(Bo(B1B2 +PBoBs + BsBs) + Bsd) 2Bo(Bo(B1B3 — BoB2 —BaPs) + Psd)
BI(BZ - P+ B3 —PB3+P3—PB2+BZ) -8  2Bo(Bo(BoB1 +PaBs + B2B3) + Ped)
2Bo(Bo(— BoB1 + PaBs + B2Bs) —Bsd)  B3(B3 — B} — B3 + B3 — B +BE + BE) -8
with 3 = 3P4 + P1Ps — B2Ps
A=p3+8?

Caxa =

This denominator A can vanish for several B; configurations. Observe, however, that when-
ever A is zero, so is the numerator. For each singular case we can confirm that a finite limit ex-
ists, as was to be expected, since the original orthogonal C matrix was finite. In all cases Bo =0
is a prerequisite for a (0/0) condition to occur. Finding the transformations for matrices with di-
mensions greater than 4x4 would show the same behavior. By =0 is always a indicator that a
mathematical singularity may occur. In none of these cases are the higher dimensional Euler pa-

rameters themselves actually singular. It is always a mathematical singularity of the transforma-
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tion itself. To circumvent this problem for particular applications, the limit of the fraction can be
found as Bo — 0. After substituting Bo = 0 into equation (57), for example, most fractions be-
come trivial and the matrix is reduced to

-1 0 0 O
c4x4=[ 0529 g]=-14x4 (58)
0 0 0-1

Substituting Po = O into equation (55) yields the same result. Actually, as long as C is of even
dimension the matrix will be -1 if Bo = 0. If the dimension is odd, as it is for the 3x3 case, the C
matrix will be fully populated. With this observation it is easy to circumvent the singular situa-
tions if the dimension is even. If the dimension is odd a numerical limit must be found. In either
case the transformation will be well behaved everywhere except the Bo = 0 surface. The fact that
the 0/0 condition can be resolved analytically to obtain finite limits should not obscure the frus-
trating fact that these 0/0 conditions would pose numerical difficulties in general numerical algo-
rithms. ‘

Let us examine the uniqueness of the transformation given in equation (53). Assuming that
the transformation is not unique, two possible higher dimensional Euler parameter sets ﬁand ﬁ

are chosen, these parameterize C as

C= (ol -B)(Bol +B)"
C=(Bol+B) " (Bol-B)

Subtracting one equation from the other the following condition is obtained:

or

= (59)

Equation (59) is the necessary condition for two higher order Euler parameter sets to yield the
same direction cosine matrix C. Obviously, for B # O this can only occur when
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B=k-
Po=k-

where k is a scalar. This condition apparently yields an infinite number of solutions. But

(60)

-

0

since the higher dimensional Euler parameters must satisfy the holonomic constraint given in
equation (52), only unit scaling values of k are permissible. Therefore k must be either +1. The
above uniquenesé study results in exactly the same duality as is observed with the classical Euler
parameters, except the restriction on Bg # 0. There are always two possible sets of classical Euler
parameters which describe an orthogonal 3x3 matrix C. It is evident that this truth extends to the
more general case of NxN orthogonal matrices . This duality was seen earlier when applying the

holonomic constraint to the kernel of A.
Crnav [B(1)] = Cnan [-B(8)] (61)

Based on the above, if By =0 nothing can be said about the transformation uniqueness. As

was seen with the 4x4 C matrix, the Bo =0 condition permits any point on the unit sphere
6 n2
D B =1

Having established the forward and backward transformations between the NxN orthogonal
matrices and the higher order Euler parameters, their kinematic equations are also of interest. To
describe the orthogonal matrix C as a generalized rigid body rotation, C must satisfy a differential
equation of the form given in equation (1). After substituting equation (48) into equation (33), 0
is

o=3plef-g)
=—\I+—|[O)\ -5 62
R e O (62)
After differentiating equation (48) directly, Q is found to be
. BoB—ByB °
0= &)_2_[.3_(1__ (63)
Bo

Upon substituting equation (62) into equation (63) and after making some simplifications, the
following kinematic relationship is found.

.y 1 3 |
BB — BoB = (Bol + B[] (Bo - B) (64)

This equation can be solved for the skew-symmetric angular velocity matrix [®].
[®] =2(Bol +B)™" (BoB - By B) (Bl ~B) ™' (65)

Note that this equation contains the same mathematical singularity at o =0 as did equation
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(53). Carrying out the algebra a closed form algebraic equation is found for the higher order an-

gular velocities.

Let us verify that equation (65) for the angular velocities does indeed generate a
skew-symmetric matrix. This is easily accomplished using the definition of a skew-symmetric

matrix as follows

(@] = — (@) =—2((Bol+B) ™ (BoB ~ BoB)(Bol~B)")"

(@] = —2(Bol - B)™" " (BoB - BoB) (BoI+B) ™"

(@] = - 2(Bol” ~BT) ™" (BoBT ~BoBT ) (Bol” +B)"
Since the matrix B and its derivative are skew-symmetric matrices by definition, further sim-
plifications are possible to obtain the following result
(@] =—2(Bol +B) ™" (- BoB+BoB) (Bol - B) ™"
[®] = 2(Bol+B) ™ (BoB=PoB)(BoI~B)™" g.ed.

All higher order Euler parameter differentials must abide by the derivative of the constraint

equation (52).
28,80 +2B;B1 + ... +2ByPar =0 (66)

After using the B from equation (49) the linear differential kinematic equations of the classi-
cal Euler parameters are found. To verify that equation (65) generalizes correctly, known classi-
cal results let us verify two special cases. For the 2x2 case, a scalar differential kinematic equa-

tion results from equation (65) as

o1 =2[-P1 Bol [.3"] (67)
B
Adding the constraint in equation (66), equation (67) can be padded to make it full rank.
0 Bo Bi ][Bo]
=2 A 68
[")1 J=2 B Bollp, (8)

Note that as with the 3x3 case, the matrix transforming B to o is orthogonal for the 2x2 case.

Therefore the inverse transformation can be written as:

-4 2
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It is straight forward to show that equations (65) and (66) give equation (17) for the 3x3 case.
Analogous to the 3x3 case, the above differential kinematic equation for the 2x2 case is also
bi-linear. As with the 4x4 and greater direction cosine matrices, for proper orthogonal matrices
having dimensions greater than 3x3 the higher dimensional differential kinematic equations also
contain polynomial fractions. Using the B matrix from equation (56) in equation (65) and collect-
ing all the angular veiocity term, we find the differential kinematic equations for the 4x4 case

i AB, AB, AB,
Bs(B2Bs —BsBe) —Bi (B2 +BE)  Bo(B; +B%) Bo(BoBs — BsBs)
Bs(B.Bs + BsBe) —Bo (B3 +BZ) —Bo(BoBs +BsBs)  Bo(BG +B3)
Be(B2Bs —BiBs) —Bs (B2 +B2) Bo(BaBs +BoB2) —Bo(BoBi +Pas) -
B3(B2Bs — B1Bs) —Ba (B3 +B3) Bo(—BoBs +BsPBs) —Bo(BoBs +PBsBs)
Ba(BiBs + BsBs) —Bs (B3 +B3) Bo(BoBs —B2Bs)  Bo(PsPa + BiBe)

LB (B2Bs — BaBs) — Bs (B3 +B2)  Bo(B2Bs —B3Bs) Bo(BoBs — B1Bs)

AB, AB, ABs s %] @0
Bo(BsBs —BoB2)  Bo(BoBs +B3Bs) —Bo(BoBs +B2Bs) Bo(B2Ps —BsPa) B,
Bo(BoB: — BaBs)  Bo(BoBs —BsBs)  Bo(BsBs +BiBs) —Bo(BoBe +PiPs) || B

Bo (B3 +B3) Bo(B2Bs —BiBs)  Bo(BoBs —PB2Bs)  Bo(BiBs —BoBs) <8, ¢
Bo(B2Bs — B1Bs) Bo (B3 + B3) Bo(BoB1 —B2B3)  Bo(BoB2 +PBiBs) [34
—Bo(BoBs + B2Bs) —Bo(BoBy +B2B3)  Bo(BF+B3) Bo(BoBs —B1B2) i
Bo(BiBs +BoBs) Bol(—PBoB2 +BiBs) —PBo(BoBs +BiB2) Bo(B3 +B7) “‘36‘

with A = B2 + (BsBs — B2Bs + B1Bs )’

B8

0

W,

(0]
M=
04

s

A

Note that this transformation matrix is no longer orthogonal as were the corresponding ma-
trices for both the 2x2 and 3x3 cases. The bi-linearity found for 2x2 and 3x3 cases is also lost for
the higher dimensional cases. Equation (70) has the same denominator as the 4x4 direction co-
sine matrix. Hence it contains the identical singular situations. However, if Bo =0, the above

transformation matrix is singular and cannot be inverted!

Thus the higher dimensional Euler parameters lose some key properties as they are general—.
ized to parameterize higher dimensioned proper orthogonal matrices. They retain the properties
of being bounded and mapping all rotations onto arcs on a unit hypersphere. However, the kine-
matic transformations and orthogonal matrix representations loose the elegance of their classical

3x3 counterparts. In particular, Bg = 0 poses several unresolved issues for all dimensions higher
than 3x3. |

Conclusion

The principal rotation parameterizations presented show great promise as an elegant means

for describing the evolution of NxN orthogonal matrices. The modified Rodrigues parameters are
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only slightly more complicated than their classical counterparts, but double the nonsingular rota-
tion domain The (M+1)-dimensional Euler parameters retain some of the desirable features of
their classical counterparts. However, for orthogonal matrices greater than 3x3 though, the or-
thogonal matrix representation formulas and the corresponding differential kinematic equations
contain some mathematical singularities which require taking the limits of polynomial fractions.
The computational effort for calculating the higher dimensional Euler parameters grows rapidly
when increasing the dimension of the C matrix. For higher dimensional rotations, the modified
Rodrigues parameters show the greatest promise. The gain (increased nonsingular domain in
comparison to the classical Cayley transformation), significantly outweighs the extra computa-

tion.
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Introduction/Motivation

Consider the Optimal Control Problem:
Find u(t) such that the solution of ’

x = f(tx,u) .x(t,) specified
extremizes

t2
J=¢+ [F(txu)dt
tl

subject to
P(t, x(t)) =0

Two Approaches to Solution:

. Function Space Approach
Take Variation
- Pontryagin’s Principle & TPBVP

. Parameterize u(t) = f(t, w,,w,,---,W,,)

Optimize (w ,w,,---,W.,)
via Nonlinear Programming
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RBF Approximation Algorithm

Consider the System of

x = f(t,x,u)
with radial basis function approximation

N 1(t__)
u=>Ywe*°
i=1

Then the system becomes

x = f(t,x, W)

Let’s consider the matrix of partial derivative.

o[22

which satisfies

4 ()] = [Tt 0)]+| e et )= [0

where




Thus, the original system can be represented
by augmented system -

= I'(t,x,w)
where i
z=| |,
K
i ]
f(t,x,w)
r(t,x,w) =
of of
Sl
The solution to this dynamical system ;
Ay = A Aw

We use minimum norm correction algorithm.
Aw = AT(A A7) Ay

SCREA e

\Vl(tf)
A
y q(tf)

185

where

and



A Step size limitation filter according

to the value of Aw is used as follows;
old

w™ = w% + Aw
where
|Aw| = VAW Aw

If Aw < ¢ for acceptably small ¢, then
aw= AT(AAT) 2y
else if Aw > ¢ for acceptably small ¢, then

AW = [—AEV;]AT(A AT)_IAy
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Even after the terminal constraints are met
we generally do not know whether how near
the performance is to optimal.

To drive the performance value toward the
optimal, we introduce a homotopy concept.

Jo =2 J + (1= 1) Jourrent
Since the homotopy concept is used to treat
the performance index (J,) as an additional

equality constraint, we modify Ay as follows;
| v, (t) |

Ay = '
Ufz(tf)

L‘Jo - ‘qurrent_

For adaptively spaced RBF algorithm
we check the sensitivity of the terminal
constraints and the performance index
w.r.t. parameters as follows;

we form the augmented Jacobian
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[dy, Oy, oy, |
oW, OW, oWy
oy, Oy, = O,
A= 3W1 8W2 aWN =[A11A21”"AN]
oyq OWq Oq
| oWy 0w, oWy |

The A vector is the gradient of the constraint
and performance index w.r.t. w,.

Adopting the positive measure of the sensitivity
w.r.t. ith parameter as

&=A:A
we introduce a new RBF according to S..

With the newly added RBF we increment %
to obtain a new J, and follow the same

procedure until a small increase(Akmm)

cannot be achieved, while satisfying all
constraints within a tolerance.
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START

Initial w, 1, o

!

x =f(t,x,w)

e

W1
T i v
ow | |ox(t) | ow ox(t¢)
| Wq
wnew — wOld + AT(A AT)-—lAY
x = £(t,x, W)
[
- OX _ ow
i W1 ]

_[aY]_[ aY TJox(t)]|_|_aY _ :
A’[aw}’[ax(tfj{ ow ]'[axaf)]q}(tf)’ Y- Wq

L‘Jo - qurrent_

wnew — wOld + AT(A AT)—IAY
|

|
|

/,/)\ No
—|AY]| ( tolerance -

No

Yes
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EXAMPLE

\tr(o) t =0
Attracting

Center
Fig. 1 Maximum Radius Orbit Transfer in a Given Time

The differential equations of the system :

r=u, 10) =1
* vZ p  Tsing

U'—'—'_——2“+————.'—,U(O)=UO
ror
mg — [mit
\'Iz_uv+ Tcos:b | v(0)=r£

The terminal constraints :
Y, =u(t;) =0

w2=v<tf>—;(—*t‘f—)=o
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Evenly Spaced Radial Basis Function Algorithm

x 10> lamda vs. # of Evenly Spaced R.B.F.s

e 57400 S N— —
ol AU U DU —
PRI T SO R T

N SR R S R
0 s 10 15 20 25

# of Evenly Spaced R.B.F.s

Fig. 2 A and r(ts) vs. time for Evenly Spaced R.B.F. Algorithm
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(V]
o
g
94
£
£2
Q. .
0 80 100
15RBFs

0 50 100 0 S0 100
time : 100 —> 3.3067(non-dim.)

Fig. 3 ¢ vs. time for Evenly Spaced R.B.F. Algorithm

4RBFs SRBFs
2 2
1 .
0 S0 100
10RBFs
2 -

15RBF.s

10 50 100 10 50 100
time : 100 ~> 3.3067(non-dim.)

Fig. 4 r(ty) vs. time for Evenlt Spaced R.B.F. Algorithm
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Adaptively Spaced Radial Basis Function Algorithm

0.08 T T T
N
LI
0.06_ ............. f ..Aé ..............................................................................
o] R
° TR
€ 0.04F e L) LR LRTTITER PP ORI R PRTR LR LLLIIRITLEELL STITICILINRRERRE
< ! \
pu | i v
0.02_ .......... 1 .......... .6 ..........................................................................
' d PN : : :
0 i Seo0-0esnpbs s o o bo o
0 5 10 15 20 25
t(tf) vs. # of Adaptively Spaced R.B.F.s
....... . T T TS SO o Q)
1.52 é./o‘o'_e_e.@ T ?
L ] SRERERETERPEPEP } Q .......................................................... , ...................
,_\148_,' ........................................................... ...................
= P :
1-46'-‘[ ........................................................... \ ...................
1o :

1.44F - foeeeen T R PRI TR TP R PPRPRRY e
[ i i i

0 5 10 15 20 25

# of Adaptively Spaced R.B.F.s

Fig. 5 X and r(ts) vs. for # of Adaptively Spaced R.B.F.s
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time : 100 --> 3.3067(non-dim.)

Fig. 6 ¢ vs. time for Adaptively Spaced R.B.F. Algorithm
3RBFs 4RBFs SRBF.s

2
1.5 ...............
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8RBFs 10RB.Fs
2 2 .

50 100 0 50 100 0 50 100

25RBFs

10 50 100 10 50 100
time : 100 --> 3.3067(non-dim.)

Fig. 7 r(tf) vs. time for Adaptively Spaced R.B.F. Algorithm
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Comparison of Two Algorithms

lamda vs. Number of Parameters

0.08 T T T T
R : : :
LN D ereesearesnnonn feemeanessessesnen SN
< 0.06 ’r b : 0-.0 : Adaptively Spaced R.B.F.s
. MY : ° -
Booak . L e e *--*:Evenly Spaced RB.Fs |
§0047 PN s : :

1.52
15
-
=146
1.44 :
0 5 10 15 20 25

Number of Parameters

Fig. 8 X and r(ts) vs. time for Two Algorithm
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CONCLUDING REMARKS

. Radial Basis Function (RBF) Methods Investigated
To Parameterize Function Space Optimal
Control Problem

. Two Variations Studied
. Evenly Spaced Centers
. Adaptive Centers

« Minimum Norm Nonlinear Programming Algorithm
Used To lteratively Adjust RBF Weights

. Applied These ldeas to Low - Thrust
Interplanetary Trajectory Optimization Problem

. Our Algorithms Have Been Fully Validated !
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HIGHER ORDER CAYLEY TRANSFORMS WITH
APPLICATIONS TO ATTITUDE REPRESENTATIONS

Panagiotis Tsiotras *

University of Virginia
Charlottesville, VA 22903-2442

Abstract

In this paper we generalize some previous results
on attitude representations using Cayley transforms.
First, we show that proper orthogonal matrices, that
naturally represent rotations, can be generated by a
form of “conformal” analytic mappings in the space
of matrices. Using a natural parallelism between the
elements of the complex plane and the real matrices,
we generate higher order Cayley transforms and we
discuss some of their properties. These higher order
Cayley transforms are shown to parameterize proper
orthogonal matrices into higher order “Rodrigues”
parameters.

1. Introduction

The question of the proper choice of coordinates for
describing rotations has a very long and exciting his-
tory. Starting with the work of Euler and Hamilton
a series of different parameterizations were intro-
duced by several researchers during the past hun-
dred years. We will not delve into these results here
since they can be found in any good textbook on
attitude representations!2. We just mention the re-
cent survey article by Shuster® in the special issue
in Ref. [4].

In this paper we take a slightly more abstract
point of view than the previous references. Our
main objective is to “unify” some of the existing
results in the area of attitude representations. It
is hoped that this global view will add to the cur-
rent understanding of attitude representations. Our
motivation stems mainly from the recent results on
second order Rodrigues parameters®®7. In partic-
ular, in Ref. [7] it was shown that these (Modified)
Rodrigues parameters can be generated by a second

*Assistant Professor, Department of Mechanical,
Aerospace and Nuclear Engineering. Member AIAA.

tEppright Professor, Department of Aerospace Engineer-
ing. Fellow AIAA.

tGraduate Student, Department of Aerospace Engineer-
ing. Student member AIAA.
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order Cayley transform, the same way the classical
Cayley-Rodrigues parameters are generated by the
Cayley transform®. Viewing the Cayley transform
as a bilinear transformation which maps the space
of skew-symmetric matrices onto the space of proper
orthogonal matrices (and vice versa) one is naturally
led to the notion of conformal mappings (a gener-
alization of the bilinear transformation) from the
imaginary axis onto the unit circle (and vice versa).
We seek to generalize these conformal mappings to
matrix spaces. Drawing on the insightful statements
by Halmos® we show that such an intuitive gener-
alization is indeed possible. We are therefore able
to generate the Euler parameters, the Rodrigues pa-
rameters and the Modified Rodrigues parameters as
special cases of such conformal mappings. Higher or-
der Rodrigues parameters can be easily constructed
using this approach, although their relevance to ap-
plications is still to be determined. We explicitly
develop the third and fourth order “Rodrigues pa-
rameters” in order to illustrate potential advantages
as well as difficulties. The question of kinematics of
these higher order “Rodrigues parameters” is much
more subtle and is briefly discussed at the last sec-
tion of the paper. A more in-depth discussion of the
kinematics is left for future investigation.

The first part of the paper reviews the standard
Cayley transform and it generalizes this transform
to higher orders. There is no restriction on the di-
mension of the matrices involved, i.e., the results
hold for n x n matrices. In the second part of the
paper we apply these results to the case of interest
to attitude dynamicists, i.e., the case n = 3.

Some notation and terminology is necessary in
order to keep the discussion clear and terse. We
use the standard mathematical notation SO(n) to
denote the space of proper orthogonal matrices of
dimension n x n. Invertible n X n matrices form the
space Gl(n), the general linear group. The space
of orthogonal matrices is denoted by O(n) and it is
the set of all (invertible) matrices A € Gl(n) such
that ATA = AAT = I. Clearly, if A € O(n) then .



det(A) = 1. The qualifier “proper” then refers
to those orthogonal matrices with positive determi-
nant, that is,

SO(n) = {A€Gl(n): AAT =1, det(A) = +1}

These matrices represent rotations, while the or-
thogonal matrices with determinant -1 represent refle-
ctions!®. The space SO(n) (as well as Gl(n) and

. O(n)) forms a group. We will see later on that

one can define a differential equation for elements
of SO(n). The solutions of this differential equa-
tion form trajectories (one-parameter subgroups) on
S0(n) and this differentiable structure makes SO(n)
actually a Lie group (i.e. a group with a differen-
tiable manifold structure).

The space of n x n skew-symmetric matrices will
be denoted by so(n) That is,

so(ny={A€R™": A= -AT}

The space so(n) is actually the tangent vector space
to SO(n) at the identity. This property can be easily
verified by differentiating A € SO(n). Since AAT =
I one has that

gt- (AAT) = 0> AAT = —AAT

Evaluating the previous expression at A = I one
obtains that

A|,_ =-4"|

A=l A=l

and so A‘A ! is skew symmetric.

2. The Cayley Transform

Cayley’s transformation parameterizes a proper or-
thogonal matrix C as a function of a skew-symmetric
matrix Q. It is, therefore, a map

b:so(n) — SO(n) (1)
The classical Cayley transform® is given by

C = 9(Q) I-QU+Q)™
= (+Q7'I-Q (2

Since Q is skew-symmetric all its eigenvalues are
pure imaginary. Thus, all the eigenvalues of the ma-
trix I+ Q are nonzero and the inverse in Eq. (2) ex-
ists. The Cayley transform is therefore well-defined
for all skew-symmetric matrices. The inverse trans-
formation is identical and is given by

Q=v"C)=4(C) = (I-ONI+O)
= 1+0)I-0) ©)
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The inverse transformation is not defined when C
has an eigenvalue at —1, because in this case det(I+
C) = 0. Since C is orthogonal, all its eigenvalues lie
on the unit circle

St = {(z1,22) € R?:z?4+23=1} (4)

Therefore sp(C) C S*, where sp(-) denotes the spec-
trum of a matrix, and the transformation (3) re-
quires that —1 ¢ sp(C). The same result is also
shown in Ref. [7].

It is an easy exercise to show that C is orthog-
onal if Q is skew-symmetric. In order to show that
the transformation (2) produces only proper orthog-
onal matrices, let us examine the determinant of C.
Using Eq. (2) the determinant of C can be expressed
as

det(C) = det(I-Q)det (I+Q)™")
det(I - Q)
det(I+ Q) (%)
Since all the eigenvalues of Q are imaginary (sp(Q) C

Q) they are of the form =i};. The spectral decom-
position of the matrix Q then yields

Q=R7'AR

where A = diag(£i);). (The matrix Q is normal
and normal matrices are always diagonalizable!!.)
Noting that I+Q = R~}(I£A)R we rewrite Eq. ()
as

det(R~1)det(I — A)det(R) _ det(I—A)
det(R-T)det(I + A)det(R)  det(I+A)
151 (1 —d)) (1 +))

[T, (1 +iX)(1 = i}y)

H?=1(1 + A;’) B

where 2p is the number of nonzero (imaginary) eigen-

det(C)

+1

values of Q. Therefore C € SO(n) if Q € so(n) and

thus, the Cayley transformation is injective (one-
to-one) and surjective (onto) from the set of skew-
symmetric matrices to the set of proper orthogonal
matrices with no eigenvalue at —1.

3. Cayley Transforms as Conformal
Mappings

The three most important subsets of the complex
numbers are the real numbers, the imaginary num-
bers, and the numbers with absolute value one (i.e.,
the numbers on the unit circle). Following the stan-
dard mathematical language, we use the symbols IR,




g = iR and S! to denote these three sets, respec-
tively. Trivially, these sets are subsets of the com-
plex plane, denoted by €. There is a very elegant
analog between these three subsets of the complex
plane and the n X n matrices®, i.e., the elements of
RR™"*". This analog can be easily understood and
appreciated as follows: An elementary result in ma-
trix algebra states that every n X n matrix with real
elements can be decomposed into the sum of a sym-
metric and a skew-symmetric matrix. For example,
any A € R**" can be written as
A+ AT A-AT

A= 3 +3 (6)
It is easy to verify that the first matrix in Eq. (6) is
symmetric and the second matrixis skew-symmetric.
Symmetric matrices always have real eigenvalues and

skew-symmetric matrices have always imaginary eigen-

values. Recall now that a complex number can al-
ways be decomposed into the sum of a real and
an imaginary part. This parallelism between com-
plex numbers and matrices allows one to treat the
symmetric matrices as the “real numbers” and the
skew-symmetric matrices as the “imaginary num-
bers” in the set of R™*" matrices’. In addition,
recall that an orthogonal matrix in IR™*™ has all its
eigenvalues on the unit circle. Drawing the previ-
ous parallelism even further we can therefore treat
the orthogonal matrices as the “elements on the unit
circle” in the space IR*". Similar statements can
be made for the case of n X n matrices with com-
plex entries (elements of C"*"), where now hermi-
tian, skew-hermitian and unitary matrices have to
be used instead of symmetric, skew-symmetric and
orthogonal matrices, respectively.

We intend to use this heuristic correspondence
between complex numbers and n X1 matrices in or-
der to motivate and generalize the Cayley transform
to higher order. Before we proceed, we briefly review
some elements from complex function theory!2:13.
First, recall that a (complex) function is analytic in
an open set if it has a derivative at each point in
that set. In particular, f is analytic at a point zo if
it is analytic in a neighborhood of zg9. Moreover, an-
alytic functions have (uniformly) convergent power
series expansions'?.

Definition 3.1 A transformation w = f(z) where
w,z € C is said to be conformal at a point zo if f is
analytic there and f’(z0) # 0.

A conformal mapping is actually conformal at
each point in a neighborhood of zo, since the ana-
Iyticity of f at zo implies analyticity in 2 neighbor-
hood of zg. Moreover, since f' is continuous at 2g, it
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follows that there is also a neighborhood of zo with
£/(2) # 0 for all z in this neighborhood!?. It is a
trivial consequence of the above definition that the
composition of conformal mappings is also a confor-
mal mapping.

A significant special class of conformal mappings
in the complex plane is the class of linear fractional
transformations (also called bilinear transformations)
defined by '

_az+b
=3 (ad = bc # 0) )

An important property of the linear fractional
transformations is that they always transform cir-
cles and lines into circles and lines'?. In this pa-
per we are interested — in particular - in conformal
transformations of the form (7) which map the unit
circle on the imaginary axis and vice versa. One
such transformation is given by w = f(z) where

w

1—-2

1= 155 ®)

It is an easy exercise to show that if z € S then
|w| = 1, that is, w € S! and thus, w is on the
unit circle. Conversely, if w € S! then the inverse
transformation z = f~!(w) given by

- l1—-w
i) =134 (9)

implies that the real part of z is zero and thus, z € S.

The inverse transformation (9) is defined every-
where except at w = —1. The point w = —11is
mapped to infinity (see Fig. 1). In fact, the map
(8) introduces a one-to-one transformation f : & —

SN\ {-1}.

Figure 1: Bilinear transformation.

Let us now introduce the conformal mapping gn
S! — S! defined by
n=23,... (10)

The function g, is 2 mapping from the unit circle
onto the unit circle. This transformation is only

gn(w) =",



locally injective. Therefore the inverse of g exists
only locally. Given x = ei? € S! the solution of the
equation

x =w", n=23,...

yields that

= ei(22E),

£=0,1,2,...,n—1 (11)
Equation (11) shows that, in general, the equation
x = w" has more than one solution. This result will
turn out to be beneficial in section 5 when we discuss
the application of higher order Cayley-transforms
to attitude representations, because these roots can
be used to avoid the inherent singularities of three-
dimensional parameterizations of SO(3). For k=0
in Eq. (11) we get that w = &%, We will call this
the principal nth root of x.

The composition of the maps f and gn is the
function hy : O — S! defined by hn = gn © f, that

) me= (55) (12)

which maps the imaginary axis onto the unit circle.
Similarly to gn, this map is only locally invertible.
A local inverse is obtained, for example, by setting
k'a= 0 in Eq. (11), in which case we have that (x =
e’)

;e
z=¢'"

# = arctan (i’f—x)
X+X

and where bar denotes complex conjugate.

where

4. Higher Order Cayley Transforms

One of the most celebrated results in matrix alge-
bra is the Cayley-Hamilton theorem. This theorem
states that a matrix satisfies its own characteristic
polynomial. An important consequence of this the-
orem is that, given any matrix A € IR"*" and an
analytic function F(z) inside a disk of radius r in
the complex plane, one can unambiguously define
the matrix-valued function F(A) if the eigenvalues
of A lie inside the disk of radius r. In other words,
if F is given by

F(2)= Eagz",

i=0

lz| <7

then

F(A) = i o A

=0
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and the previous series converges assuming that |};] <
r where ); € sp(A) for j = 1,2,...,n. There-
fore, the matrix F(A) is well-defined. Moreover,
the eigenvalues of the matrix F(A)are F();) (i =
1,2,...,n) (Ref. [11]).

Consider now the conformal mapping f from Eq.
(8) which maps the imaginary axis on the unit circle.
This function is analytic everywhere. According to
the previous discussion, the matrix

Q) =(-QU+Q " =(+Q)(I-Q) (13)

is well-defined for Q € so(n) and, actually, C =
£(Q) € SO(n). Comparison between the previous
equation and Eq. (2) reveals that the Cayley trans-
form can be viewed as a special case of a conformal
mapping in the space of matrices.

We have seen that there is a natural correspon-
dence between S and so(n), as well as between st
and SO(n). (We caution the the mathematically in-
clined reader to take these statements in the context
of the discussion in section 3. We do not claim that
this correspondence carries any more weight than
providing one qualitative motivation for the gener-
alization of certain complex analytic results to anal-
ogous results in the space of matrices). Following
Eq. (12) we can also define a series of transforma-
tions hy, : so(n) — SO(n) by

h(Q=(-Q U+Q " =T+ -Q)
(14)

where Q is a skew-symmetric matrix. It should be
clear by now that C = ha(Q) is a proper orthogonal
matrix, i.e., C € SO(n). We shall refer to the family
of maps ha(Q) in Eq. (14) as Higher Order Cayley
Transforms. The consequences of such a generaliza-
tion in attitude representations will become appar-
ent in the next section.

For now, let us concentrate on the inverse map
h;!: SO(n) — so(n). Since hn = gno f one obtains
ht = f~'og;!. The function f~1 is given by
Eq. (9) which, when applied to a proper orthogonal
matrix Q with no eigenvalue at -1, gives the inverse
of the classical (or first order) Cayley transform as
in Eq. (3). The map g5 : SO(n) — SO(n) on the
other hand requires the nth root of an orthogonal
matrix. First, we show that g;! is well-defined in
the sense that the nth root of a (proper) orthogonal
matrix with no eigenvalue at —1 is also a (proper)
orthogonal matrix with no eigenvalue at —1. This
will also prove that the composition of maps g}
and f-! is well-defined since the range of g !isin
the domain of f~1.

To this end, consider an orthogonal matrix Ce
SO(n) such that A # —1for all A € sp(C). The



matrix C can be decomposed as follows

c=UoUu* (15)
for some unitary matrix U, where
o= blockdiag(©1,©3,...,0n-1,+1) (16)
if n is odd and
© = blockdiag(©1,©2,...,©na) (17)

if n is even, and

i0; 0 .
e,-=[°0 c'“i]’ j=1,...,n (18

The diagonal elements of the matrix © in Eq. (15)
are the eigenvalues of C. The principal kth root of
the matrix C is then given by

W=Ue:U"
where W* = C and
O, = blockdiag(©%,0%,...,05_,+1)  (20)
if n is odd and ‘

Oy = blockdiag(©%,0%,..

(19)

.,0F) (21)

if n is even, and

@’.’:[ei!‘i 0

.05
0 e %

], i=1...,n (22)

Since ei% # —1forall j = 1,...,n (n — 1) the
angles §; # +180deg and thgs also -’-,g- # +180deg

for k = 2,3,... and thus e":l" # —1. Notice that
in order to keep W proper we always choose the
positive root of the eigenvalue +1.

5. Attitude Representations

In this section we concentrate on the ramifications

of the previously developed results to attitude rep-
resentations. Our motivation for investigating Cay-
ley transforms in the first place, stems from the fact
that proper orthogonal matrices represent rotations.
In particular, SO(3) is the configuration space of all
three-dimensional rotations. In other words, every
element of SO(3) represents a physical rotation be-
tween two reference frames in IR® and conversely,
every rotation can be represented by an element in
SO(3).

As a reference frame, viz. a body, rotates freely
in the three-dimensional space, the corresponding
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rotation matrix C traces a curve in SO(3) such that
C(t) € SO(3) for all t > 0. The differential equation
characterizing this trajectory on SO(3) is given by

¢ =WlC (23)

where, given a vector w = (w1,ws,w3) € R3, the
matrix [w] is defined by :

0 w3 —W32
W= [-ws 0 w ] (24)

w, —w; O

In the sequel we apply the results of the previous
section in order to parameterize the rotation group.
In particular, the series of conformal mappings from
Eq. (14) provide a family of coordinates on SO(3).
Before undertaking this task we investigate another
important conformal mapping.

5.1. The Exponential Map and the Euler Pa-
rameters

Linear fractional transformations are not the only
class of conformal mappings from the imaginary axis
onto the unit circle. The exponential map, defined
by

' w = ezp(z) = €’ (25)

also maps S onto S!. Clearly, if z = if then |z]| = 1.
The inverse transformation is
z =logw = i(8 + 2n7), n=0,%1,%2,...

and is defined only locally.
We can therefore define the exponential map from
the space of skew-symmetric matrices to the space of

proper orthogonal matrices. This exponential map
is defined, as usual, by

C=e9= Z ;1-!-Q" (26)

and the series converges for every Q. For the three-
dimensional case, the matrix Q € so(3) can be pa-
rameterized by

0 Bz -P2
Q=| -bB 0 A (27
B2 =P 0

As before, given a vector B = (81,52, 8) € R3 we
will also use the notation [B] to denote the skew-
symmetric matrix in Eq. (27). Noticing that

[81° = 867 — NIBI*I



one obtains that

B2+ = (-1)*[1611*(8),

and

£=0,1,2,...

[81%* = (=D 18I 1 — (-1 18I°¢ =887

Substituting the previous expressions in Eq. (26) we
get Euler’s formula3

T
cB) = ¥l = cos ¢I+sm¢ L] + (1 - cos¢) —5 ﬁﬁ
where ¢ = ”ﬁ” Equivalently,
Pl=T+ sanS ¥l + (1 —cos @) =5~ [ﬂ] (28)

Normalizing the vector § we get a unit vector

s P
= 18l
or
B =¢é (29)

Euler’s theorem! states that any rotation can be
represented by a finite rotation (principal rotation)
about a single axis (principal axis). That is, the
principal axis and the principal angle suffice to de-
termine the rotation matrix. From a mathematical
perspective this amounts to parameterizing every el-
ement in SO(3) by the principal axis and the prin-
cipal angle.

By letting the principal axis be along the direc-
tion of the unit vector é and by letting the principal
angle be ¢ as above, Eq. (28) shows how this pa-
rameterization is achieved. Clearly,

C(4,8) = e?lé (30)

Moreover, introducing the Euler parameter vector
q = (90, 91,92, 93)
cesn? =
go=cosg, g=é&sing, i=1,23 (31)
and substituting in Eq. (28) one obtains the well-
known formula for the rotation matrix in terms of
the Euler parameters

@+ai—-ad-a 2(q192+ 9093)
2(q192 — gog3) 93 —a> +43 — 3
2(q193 +092)  2(g293 — qo01)

2(g193 — 9092)
2(q293 + goq1)
-¢d-dd+d

Clg)=

(32)

[aTate)

Therefore, the Euler parameter representation
is obtained by generalizing the conformal mapping
in Eq. (25) to the space of matrices. Notice from
Eq. (32) that C(q) = C(~¢) and both g and —¢
can be used to describe the same physical orienta-
tion. This fact can be used to construct alternative,
or “shadow”, sets of kinematic parameters obtained

via the Cayley transforms.

5.2. Rodrigues Parameters

Since the Euler parameters satisfy the additional
constraint ¢ + ¢ + ¢% + ¢ = 1, one is naturally
led to consider the elimination of this constraint,
thus reducing the number of coordinates from four
to three. The Rodrigues parameters achieve this by
defining

pi=%,  i=1,2,3 (33)
90
The three parameters py, p2, p3 then provide a three-
dimensional parameterization of SO(3). The inverse
transformation of Eq. (33) is given by

1 Pi ,
=0 =T o i=123
(43 7 (14503
(34)
where p? = p? + p2 + p3. The Rodrigues parameters

are related to the principal axis and angle through
the equation

p=tan-§é

The rotation matrix in terms of the Rodrigues pa-
rameters can be easily computed using Eq. (32) and
Eq. (34).

1 1-p2+2p8 2(p1p2+ p3)
Clp)= 77 2(p1p2—p3) 1-p*+2p3
2(pap1 +p2) 2(p2p3—p1)

2(p3p1 — p2)

2(p2p3 + p1)

‘ (35)
1-52+2p3

It is remarkable the fact that the previous parame-
terization of SO(3) can also be achieved by means
of the Cayley transformation in Eq. (2). Indeed, if
we introduce the skew-symmetric matrix

0 —-p3 p2
R==pl=| ps 0 —p
-2 p 0

the transformation

C=(I-R({I+R)y'=(I+R)'(I-R) (36) .




produces exactly the matrix in Eq. (35). There-
fore the classical Cayley-Rodrigues parameters rep-
resentation is obtained by generalizing the confor-
mal mapping in Eq. (8) to the space of matrices.

5.3. Modified Rodrigues Parameters

The normalization in Eq. (33) is not the only pos-
sible one. A more judicious normalization for elim-
inating the Euler parameter constraint is through
stereographic projection!®13:14, Using this approach,
the new variables

_ 9

T T

provide coordinates on SO(3). These parameters
are referred to in the literature as the Modified Ro-
drigues parameters® and have distinct advantages
over the classical Rodrigues parameters. In partic-
ular, while the Rodrigues parameters do not allow
eigenaxis rotations of more than 180 deg, the Mod-
ified Rodrigues parameters allow for eigenaxis rota-
tions of upto 360 degs""“'""m. This can be imme-
diately deduced by the corresponding relationship
between ¢ and the principal axis and angle

i=123 (37)

a=tan£é

4

which is well-behaved for 0 < ¢ < 2. Since both ¢
and —q describe the same physical orientation (re-
call the discussion at the end of section 5.1), 2 second

set of parameters defined by
s gj

A

i=123

referred to as the “shadow” set!S, can be used to
describe the same physical orientation. These pa-
rameters are also given by
o' = ! é

tan %

The transformation between ¢ and ¢* is given by!®

(38)

o
o= ——
&2
where 62 = 070 = 62 + 02 + 03 = tan? $.
The rotation matrix associated with the Modi-
fied Rodrigues Parameters is given by

1 421-}'22 - 80’10’2+4~0’3§
C(U)::l_-:‘;f 80102 — 4032 4%, + 12 .
80103 + 402X 80203 — 40T
80’10'3 - 4722
80,03 + 4018 ] (39)
4%3 + $2
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where £ =1-% and £; = -4 + 20}, j = 1,2,3.

In Ref. [7] it was shown that these parameters
are defined by a Cayley transformation of second
order. That is, if

0 —03 02
S= —[0’] = [ g3 0 -0 ] (40)

D) o1 0
then the transformation
C=(I-82I+8)2=I+852(I-5) (41)

produces exactly the matrix in Eq. (39). Notice that
the inverse of the transformation (41) is not unique
and it requires the square root of an orthogonal ma-
trix. Given C € SO(3) we find a matrix W such
that

C=Ww? (42)

Once a matrix W is calculated, the skew-symmetric
matrix S containing the Modified Rodrigues param-
eters is computed from

S=(I-W)(I+W)t=I+W)I-W) (43)

Reference [7] outlines this approach. To every or-
thogonal matrix corresponds a principal angle and
a principal direction according to Eq. (30). From
Eqs. (30) and (42) one therefore has that

W = el (44)

and W has half the principal angle of C. It should
be apparent now how the Modified Rodrigues pa-
rameters double the domain of validity of the pa-
rameterization by taking the square of the classical
Cayley transform.

This observation motivates the search of higher
dimensional Cayley transforms for attitude repre-
sentations. Such transformations are expected to
increase the domain of validity even further. This is
the topic of the next section.

5.4. Higher Order Rodrigues Parameters

According to the discussion in the previous section
one expects that higher order Cayley transforma-
tions will increase the domain of validity of the cor-
responding parameters. The main task of this sec-
tion is to derive these higher order parameters and
find their connections to the Rodrigues parameters,
the Modified parameters and the Euler parameters.
To this end, consider first the fourth order Cayley
transform defined by

c=(I-D*I+1)* 4. (45) -



for some skew-symmetric matrix

0 -m»m n
T=-[r]= { 73 0 -n ] (46)

-T2 T1 0

We know that the matrix C is (proper) orthogonal.

Recall from the results of section 3 that if F is
analytic function, then the eigenvalues of the matrix
F(A) are given by F(};) where ); are the eigenval-
ues of A. It is an easy exercise to show that the
eigenvalues of the skew-symmetric matrix in Eq. (46)
are given by

0, i(r2+7i+rd)} (47)

Similarly, the eigenvalues of the matrix S in Eq. (40)
are given by

0, =+i(e? +ol+od)} (48)

Let A, denote an eigenvalue of T and A, an eigen-
value of S. Comparing Egs. (41) and (45) one sees
that the matrices S and T are related by

(I-S){I+8) =1~ TI+T)"%  (49)

This suggests that A, and A, are related by -

1-2, _ (1=-X)?

1+A,"(1+Af) (50)
or (14 20)?

— T

1+, = Tra

Solving for A, one obtains that
2,
A= T3 A2

Substituting the expressions for A, and A, from

Egs. (47) and (48) in the previous equation one ob-
tains that

+i(r2 + 3 + )}

2

of 2 2\%
i1(0'1+0'§+0'3)%—2 1-—1’?—1’22—1'3

Upon squaring this expression one obtains

2., .24 .2
2, 2,2 _ Tt T
At =g g =)

This equation suggests that ¢ and 7 are related by

27j

0; = k————t——
J 2 2_ 22!
l=tf—15—13

i=123 (51)

Arbitrarily, and without loss of generality, we choose
the solution with the plus sign. Substitution in S

and computing C from Eq. (41) verifies the expres-
sion in Eq. (51).

The relation between 7 and ¢ is obtained by ob-
serving that

27; _ 9
1—12—71i-1} 1+¢o’

i=1,23 (52)

Using the shorthand notation #2 = 77 + 75 + 73 the
previous expression can be written as

2r; g

1_.}2—1+q°i J=1|2:3
Therefore,
PR 6 X e
(1-722 " (1+q)
or

(l-i-f"")2 _ d+d+ad+(+e)

172 (1+q0)?
2(1+q0) _ 2 -
(1+g)* 144 (53)
or that
1+# _ V2
1-727 T T+ g
and thus, ‘
2 _ 2241+
1-72 Vit
Using now Eq. (52) one finally obtains that

= gj
1+ g0 % v/2(1 + go)

Conversely, from Eq. (53) one obtains that

i=1,23 (54)

1-#2)°
14g0=2 (Iﬁ) (55)
and using Eq. (52) that
_4n(1-7)

g = ok i=123

From Eq. (55) we also have that

_2(L:f)’_1_(1—6ﬂ+fﬂ
PEATFE =T+

where # = (#?)%. Letting W = (I -T)(I +T)!
and since C = W* one obtains that

W = e3ld

MNA



where ¢ is the principal angle of C. Moreover, using
the definition of the Euler parameters from Eq. (31)
one obtains the following result for the 7 parameters

= iy & (56)

where & is the unit vector along the principal axis.
Using the trigonometric identity cos % = 2 cos’ %-1,
the previous equation reduces to
,e sin %
B 1+cos%:h2coséf1i

é (57)

Keeping the plus sign, Eq. (57) can be further re-
duced to the simple formula

T4 = tan % é, (-dr < p<4r)  (88)
From Eq. (58) it is apparent that 7 is proportional
to the principal rotation axis, like the classical and
the Modified Rodrigues parameters, where now the
proportionality factor is f(¢) = tan%. A plot of
f(#) is shown in Fig. 2.

3
£(9)
2

1

-3 pi-2 Pi -Pj pi 2Pl 3 P ¢
-1

-2

At
Figure 2: Plot of f(¢).

Equation (58) is reassuring, since it proves that
the 7 parameters indeed behave as “higher order”
Rodrigues parameters which can be used to “lin-
earize” the domain of validity of the kinematic pa-
rameterization. By this, we mean that Eq. (58) be-
haves almost linearly as a function of the principal
angle ¢ (especially in the region ~7/8 < ¢ < n/8);
see also Fig. 3.

If we choose the minus sign in Eq. (56) we obtain
that 1

tan %

—=-

é, (0< ¢ <8m) (59)

Moreover, reversing the signs of the Euler parame-
ters in Eq. (54), one obtains that the 7 parameters
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have a unique set of “shadow” parameters like the
Modified Rodrigues parameters'®>. These parame-
ters are obtained by setting :

—sing
sin 5

-8

= é 60
1—cos%:t2sin%e (60)

In can be easily verified that the corresponding “shadow”
parameters reduce to

tan2 -1
s -8 ¢ —2r < ¢ < 6w 61
T+ ta.n%+1 ( ¢ ) ( )

and

[
- _1+tan§é

= (—67 < ¢ < 27) (62)
1—tan %

As the original 7 parameters approach +1, the asso-
ciated “shadow” parameters T° approach zero and
vice versa. The general transformation between the
original and the “shadow” set is given by

1-#2
s . _ I A,
TETT ( %2+(1+f2)+) (63)

where 7 = (#2)3. Equations (58),(59),(61) and (62)
can be used in order to compute the four distinct
roots of Eq. (45). Note also that Egs. (58),(61),(59)
and (62) can be also written in the form

—tan (S —k%) 6 _
'r._tan(s k4)e, k=0,1,2,3

respectively.

The “shadow” parameter set 7° is shown side-by-
side with the original 7 parameters in Fig. 3. The
shadow set is plotted in grey color. Figure 3 also
shows that T parameters are indeed very linear for
small rotations within £180 deg.

As with the Modified Rodrigues parameters (and
other stereographic parameters!'®), these “shadow”
parameters represent the same physical orientation
as the original set and abide by the same differen-
tial kinematic equation. They could be used to avoid
the problems of approaching the 720 deg principal
rotation. By switching to the shadow trajectory,
all numerical problems would be avoided. Having,
however, a principal rotation range of £720 deg is
really more than needed. Limiting the principal ro-
tations to be within +180 deg would suffice and be
much more attractive. As the magnitude of 7 ap-
proaches tan § then one would simply switch the
to their “shadow” set. Having |r] = tan § corre-
sponds to go = 0. From Eq. (54) one can then see .



e

3L TP S k)

T vi4 P

Figure 3: Comparison of original and “shadow” 7
parameters.

that at this point, the two sets of parameters are
related by r = —7°*. The combined set of original
and “shadow” 7 parameters would provide a set of
attitude coordinates which are “very linear” with re-
spect to the principal rotation angle, more so even
than the Modified Rodrigues parameters. We note
in passing that the previous approach can be easily
extended to any Cayley transform of order 2F, since
Egs. (49) and (50) can be used iteratively.

For the third order Cayley transform we have
that

C=(I-PPUI+P)3=(+P)°(I- P)® (64)

where P = —[p] and p = (p1, P2, ps) the correspond-
ing parameters. If A, and ), denote the respective
eigenvalues of the skew-symmetric matrices R and P
then, using Eqs. (36) and (64), they must be related

by
1-2, _ (1=%)3
1+, (1 + ,\,)

or, upon expanding the previous equality

1-), _1=23+30-3)
1+, 14+2A3+3X2+3%

thus 14 0)°
=Lt )
1+ =T
Solving for A, we obtain
_ M3+ )
T 143A2

The previous equation suggests that p; and p; are
related by
gy = Il Sl Bk )
TTT1-30t + P3P

i=123

704

In order to get the relation of p to the Euler
parameter vector one can set
pi3-pi-P3—p3) _ 4 (65)
1-3(p1+p3+P)) @

and solve for p2 = p? +p3+p3. After some algebraic
calculations, it is not difficult to show that, in fact,

52 4+ 1 3 1
=7 )

Solution of the previous equation for p? requires the
solution of a cubic equation. Once p? is known how-
ever, it can be substituted into Eq. (65) to get the
desired result. Actually, from Eqgs. (65) and (66) we
have that

_1-3 q.___ipj(3-132)
G+l 7T a+Y

Letting W = (I - P)(I + P)~! then since C = w?

one obtains that

g0 ji=12,3

W =Sl

where ¢ is the principal angle of C.

6. Kinematics

The kinematic equations in terms of the = param-
eters can be computed as follows. From Egs. (23)
and (45) we have that

¢ = %[(I T+ + (I - T)"‘%[(I +T)74
= SI-TI+T)
or that
4 (I-T-C@OI+TY] = SEU-D* 6

where we have used the fact that

d o1 1 (d -1
th =-4 (th)A

for any square matrix A. Using also the fact that
d . n-1 ; d i
— A" = —_ ~-j-1
54 12_‘3 A5 tA) A

and performing the differentiations in the left-hand-
side of Eq. (67), one obtains a set of nine linear equa-
tions in terms of #1, 72. and 73. Similarly, the right-
hand-side of Eq. (67) is linear in terms of wy,ws,ws. .



Choosing three (independent) equations out of these
nine, we get a linear system of the form

V(r)r =U(r)w

Solving for 7 we finally get that the kinematic equa-
tions for the T orientation parameters are given by

%:Vﬂuwup=cuw

where the matrix G(r) is given by
T + 373 = 3(r + )
2r3(1 = 72) + 1 72(3 — %)
—21,(1 = #%) 4+ n7s(3 - #2)
—2n3(1 - #%) + (3 - #?)
Ty + 727l - 3 +173)
21’1(1 - {,2) + 1’2T3(3 - .;.2)
21‘(1 - 1‘:‘2) + 1’11‘3(3 - .;.2)
(68)

G(r) =

1-#2

—21’1(1 - ‘3\'2) + f213(3 - ‘?2)
Ts+7ir3 = 3(rf +73)

and T = Y(1+7f+ 75 + 74 —-27f), § =1,2,3. This

equation can be written more compactly in a vector
form as follows
dr 1
E"&h#ﬂm
- 41—+ -672+ 7w (69)

- ?2)1'1'7'

These kinematic equations are not as simple as
the corresponding kinematic equations for the Ro-
drigues or the Modified Rodrigues parameters™!*,
Moreover, there is an apparent singularity at 7+ =
+1, equivalently at ¢ = 27, The limiting behavior
of these equations as # — =1 will be determined
through further analytical and numerical studies.
At any rate, because of the near-linear behavior be-
tween ¢ and the magnitude of T as seen in Fig. 2,
for small principal angles, Eq. (69) is expected to be-
have in a more “linear-like” fashion than either the
Cayley-Rodrigues or the Modified Rodrigues param-
eters. '

Similarly, for the third order Cayley parameters,
one can derive the following kinematic equations

o _ __1 _ -2y T
& = 6P [(11 - 7%)pp

- 33-AE+31-3Mw (10)

These equations can be derived starting from Egs.
(23) and (64) and using similar arguments as before.
Singularities for the p parameters are encountered at
P = +v/3. As before, further analysis is required to
determine the limiting behavior of this system as
p— +V3.
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7. Numerical Example

In order to demonstrate the potential benefits or
drawbacks of the previous kinematic parameters the
following simulation was performed. We integrated
Egs. (69) as well as the corresponding kinematic
equations in terms of the Cayley-Rodrigues (p) and
the Modified Rodrigues parameters (¢) starting from
the zero orientation and subject to the constant an-
gular velocity vector w = (0.25,0.4, —0.1) (rad/sec).
This corresponds to a linearly increasing value of the
principal angle . The results of the simulations are
shown in Fig. 4. This figure actually shows only the
first components of the kinematic parameter vec-
tors, as the other two components exhibit similar
behavior.

COMPARISON OF ORIENTATION PARAMETEAS

O 1 2 3 4 § 6 7 8 9 10 11 12 13 1 15

¢ (rad)

Figure 4: Orientation parameter comparison.

As it is evident from this figure, the classical and
the Modified Rodrigues parameters encounter the
singularity earlier that the 7 parameters. We note,
however, that since discontinuities in the parameter
description are typically acceptable in applications,
the Modified Rodrigues parameters can be made to
avoid the singularity altogether by simply switch-
ing to their “shadow” set!S. The same also holds
for the 7 parameters via Eq. (63). Figure 5 shows
the simulation where the parameters ¢ and 7 are
allowed to switch to their respective “shadow” sets.
Although the points of switching are arbitrary and
can be chosen according to the particular applica-
tion, a reasonable choice is to switch when the pa-
rameters and the corresponding “shadow” set have
opposite signs. This will ensures continuity of the
magnitude. From Egs. (38) and (63) this occurs
when ¢ = kx, k = £1,%2,.... This is the situation
depicted in Fig. 5. The = parameters are shown in
solid line, and the o parameters are shown in dashed
line.
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Figure 5: Orientation parameter and their “shadow”
sets.

Since the classical Rodrigues parameters do not
have an associated “shadow” set (better, the shadow
set coincides with the original parameters), only the
the o and 7 parameters are plotted in Fig. 5.

8. Conclusions

We have extended the classical Cayley transform
which maps skew-symmetric matrices to proper or-
thogonal matrices to higher orders. The approach
is based on the observation that Cayley transforms
can be viewed as generalized conformal (bilinear)
mappings in the space of matrices. The Euler pa-
rameters, the Rodrigues parameters and the Modi-
fied Rodrigues parameters follow as special cases of
this approach. In addition, we generate a family of
higher order “Rodrigues parameters” which could be
used as coordinates for the rotation group. It still
remains, however, to determine the applicability of
these higher order parameters in realistic attitude
problems.

9. References

{1] Hughes, P. C., Spacecraft Attitude Dynamics.
New York, John Wiley & Sons, 1986.

[2] Wertz, J. R., Spacecrafi Attitude Determination
and Control. Dordrecht, Holland, D. Reidel
Publishing Company, 1980.

(3] Shuster, M. D., “A Survey of Attitude Repre-
sentations,” Journal of the Astronautical Sci-
ences, Vol. 41, No. 4, 1993, pp. 439-517.

12

“NO

[4] Special Issue on Attitude Representations,
Journal of the Astronautical Sciences, Vol. 41,
No. 4, 1993. )

[5] Wiener, T. F., Theoretical Analysis of Gimbal-
less Inertial Reference Equipment Using Delta-
Modulated Instruments. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge,
Massachusetts, March 1962.

[6] Marandi, S. R. and Modi, V., “A Preferred
Coordinate System and the Associated Ori-
entation Representation in Attitude Dynam-
ics,” Acta Astronautica, Vol. 15, No. 11, 1987,
pp. 833-843.

[7] Schaub, H., Tsiotras, P., and Junkins, J. L.,
“Principal Rotation Representations of Proper
N x N Orthogonal Matrices,” International
Journal of Engineering Science, Vol. 33, No. 15,
1905, pp. 2277-2295.

(8] Junkins, J. L. and Kim, Y., Dynamics and Con-
trol of Flezible Structures. New York, ATAA,
1993.

(9] Halmos, P. R., Finite Dimensional Vector
Spaces, Vol. 7 of Annals of Mathematics Stud-

ies. Princeton, NJ, Princeton University Press,
1953.

[10] Curtis, M. L., Matriz Groups. New York,
Springer-Verlag, 1979. :

[11] Horn, R. and Johnson, C. R., Mairiz Analy-
sis. Cambridge, United Kingdom, Cambridge
University Press, 1985.

[12] Churchill, R. V. and Brown, J. W., Complez
Variables and Applications. New York, Mc-
Graw Hill, 1990.

[13] Conway,J. B., Functions of One Complez Vari-
able. New York, Springer Verlag, 1978.

[14] Tsiotras, P., “On New Parameterizations of the
Rotation Group in Attitude Kinematics,” Tech-
nical Report, Dept. of Aeronautics & Astro-
nautics, Purdue University, West Lafayette, IN,
January 1994.

(15] Schaub, H. and Junkins, J. L., “Stereographic
Orientation Parameters for Attitude Dynam-
ics: A Generalization of the Rodrigues Param-
eters,” in AAS/AIAA Space Flight Mechanics
Conference, Feb. 13-15, 1995. Albuquerque,
NM.

[16] Tsiotras, P., “New Control Laws for the At-
titude Stabilization of Rigid Bodies,” in 13th
IFAC Symposium on Automatic Control in
Aerospace, pp. 316-321, Sept. 14-17, 1994. Palo
Alto, CA.



TAMU AERO 96-5-16

AN EIGENFACTOR SQUARE ROOT ALGORITHM
FORMULATION FOR NONLINEAR DYNAMICS

John L. Junkins* and Hanspeter Schaubf

A novel method is presented to solve the equations of motion for a large
class of constrained and unconstrained dynamical systems. Given an analytic
expression for the system mass matrix, quasi-coordinate equations of motion
are derived in a manner that generates equations analogous to the dynam-
ics/kinematics partitioning in Eulerian rigid body dynamics. This separation

+ is accomplished by introducing a new quasi velocity coordinate 7 which yields
a dynamical system with an identity mass matrix. The problem of inverting
a complex mass matrix is replaced by the problem of solving two first order

differential equations for the mass matrix eigenfactors. A new method is in-

troduced whereby dynamical constraint equations are solved using a related
eigenfactor formulation, forgoing any need to solve the algebraic constraint
equations simultaneously with the differential equations of motion.

INTRODUCTION

The equations of motion of complex dynamical systems are usually second order nonlinear dif-
ferential equations which require taking the inverse of a time-varying, configuration variable mass
matrix. Such dynamical systems could be a large nonlinear deformation model for an arbitrary
body, a multi-body system or a multi-link robot arm. One reason why the resulting dynamics
are complicated is that they are usually written in a way that combines coordinates natural to
the momentum or energy description with those natural to the displacement description. The re-
sult is a split between momentum differential equations and kinematic differential equations. This
natural splitting is typically destroyed when the generalized methods of mechanics are employed
and result in a more complicated mass matrix. This occurs when the classical Lagrange equations
of motion are written in terms of a generalized coordinate and their time derivatives. By using
Newton-Eulerian mechanics or the Boltzmann-Hamel version of Lagrange’s equations, it is possi-
ble to introduce quasi-coordinates which separate the decision of choosing displacement coordinates
and velocity (momentum) coordinates. As is well-known, (e.g. Eulerian rigid body dynamics), this
process often leads to much more attractive equations than those that result from “brute force”
application of Lagrange’s equations. It is possible to bring the equations of motion to their most
convenient form with a constant mass matrix."> For general configuration-variable mass matrices,
there has not been a generally applicable method to accomplish an analogous transformation.

Several methods have been proposed to carry out the mass matrix inverse®® ranging from taking
an algebraic inverse, to using traditional numerical inverse methods (such as a Cholesky decompo-
sition) to the elegant method of using the innovations factorization.? Naturally each method has its
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advantages and disadvantages. The algebraic inverse in only feasible for relatively small systems,
even with symbol manipulation programs such as Mathematica and Maple. Taking a numerical
inverse at each integration step is computationally costly and difficult. The method proposed by
Ref. 2 uses the innovations factorizations technique to parameterize the mass matrix and recur-
sively approximate its inverse. The mass matrix factors involved are obtained from a recursive
filter. However, this recursive filter is conveniently applicable only to a linked body chain and other
kinematically recursive topologies.

This paper presents a method to solve a very general class of constrained and unconstrained dy-
namical systems and avoids the necessity of inverting a configuration variable mass matrix to obtain
instantaneous accelerations. The equations of motion will be separated into dynamical and kine-
matic differential equations somewhat analogous to classical developments in rigid body dynamics.
The mass matrix will be initially parameterized by a numerical eigenfactor decomposition. After es-
tablishing this initial condition, only the eigenvectors and the eigenvalues of the mass matrix will be
forward integrated from differential equations derived herein. The resulting method will require no
matrix inverse to be taken. The eigenfactor differential equations are solved by extending an elegant
square root algorithm proposed by Oshman and Bar-Ttzhack? to solve the matrix Riccati equation.
The formulation also allows any Pfaffian constraints to easily be incorporated into the equations
of motion, thus avoiding having coupled algebraic constraint equations to be solved simultaneously
with the original equations of motion. The implications of these developments for both efficiency
and accuracy are enormous.

PROBLEM FORMULATION

The equations of motion for a dynamical system are usually derived by first formulating the
kinematic energy T and the potential energy V. Let the system Lagrangian £ be defined as

L=T-V (1)
Let z be the system state vector, then the potential energy is given by
V=V() @

The kinetic energy can be written in terms of the generalized configuration coordinate vector deriva-
tive & or in terms of a quasi-velocity vector y defined as

y= P(z):i: (3)

A field where quasi-velocities are often preferred over configuration coordinate derivatives is in rigid
body dynamics. For example, it is much simpler to write the system kinetic energy in terms of the
body angular velocity w then in terms of the Euler attitude angle derivatives 8. Let M(z,t) be the
mass matrix for a system described with y, then the kiretic energy is given by

1+~ - = .
T=T+T1+T= -2-yTM(a:, )y + GT(z,t)y + To(z, 1) (4)

where the T} and Tp terms only appear in unnatural systems. However, to find the traditional version
of Lagrange’s equations of motion the kinetic energy needs to be written in terms of generalized
coordinate derivatives, not quasi-velocities. Using Eq. (3), the kinetic energy can be rewritten in
terms of z. :

T, = LT D) (2 ) P(2)s = 37 M(zt) %)

T, = GT(z,t)P(2)% = GT (z,t)z (6)

where M(z,t) = P(z)T M(z,t)P(z) is the system mass matrix for the state vector (z,%) and G(z,t) =
PT(z)G(z,t). For mechanical systems M(z,t) will always by symmetric positive definite. Let @ be
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a non-conservative forcing term and let AT be the constraint force, then the Lagrange equations
of motion are defined as

£ (2)- %m0 .
with the Pfaffian non-holonomic constraint
A(z)z +b(t) =0 (8)
The partial derivatives of the system Lagrangian L are
8L — Mzt + Gt ©)
and oL 1.p0M(zj). 0GT(5,t).  OTu(z,t) 8V
5z 2" Oz Tt "5 ot 9z 0z (10)

The resulting standard Lagrange equations of motion are

w . 1.p0M(z,t) _3GT(z,t) LA _8To(:c,t) vV _ ,_ 4T
M(zt)E + (M—Ez 32 Fe &+ G(z,t) 5 + 52 =Q-ATx (1)

or more compactly oV
M(z)3 + H(z,2:t) + 5-=Q - AT (12)

The above equations of motion are a second order nonlinear differential equation, obviously not
generally a simple task to solve. In particular, the time and state dependence of the mass matrix
poses a particular difficulty. These standard equations of motion, when coupled to the constraint
equations in Eq. (8), pose a more significant challenge, especially for high dimensioned systems. The
necessity of solving systems of order n+m to obtain (£, for each (z,3,t) lies at the heart of the
difficulty.

THE BOLTZMANN-HAMEL EQUATIONS OF MOTION

We motivate this development using rigid body dynamics wherein it is common practice to separate
the momentum dynamics and kinematics. Euler’s equation of motion are usually written in terms
of the body angular velocity w, not in terms of the time derivative of the attitude coordinate vector
0.

Sw = -[0]Sw+u
6 = f()w

The first equation of Egs. (13) describes the system momentum time rate of change, the second
describes the kinematic relationship between the body angular velocity and the attitude coordinate
derivative. Only using 6 and its inertial derivatives would yield a much more complex second order
differential equation.

(13)

This separation of dynamics and kinematics in the equations of motion cannot be accomplished in
more general dynamical systems. However, we show a way to accomplish an analogous structure in
the system equations, at the expense of increasing the number of differential equations to be solved.
This involves projecting the configuration coordinate derivative into 2 moving reference frame®+? by
introducing a quasi-velocity vector which diagonalizes the mass matrix. Since the mass matrix M is
always symmetric and positive definite, it can be spectrally decomposed using the orthogonal real
eigenvector matrix E and the diagonal positive real eigenvalue matrix D. Instead of using E, let us
use C = ET

M=CTDC C€CT=1I1 D =diag(X\) (14)
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Let the diagonal S matrix be defined as the positive square root of the eigenvalue matrix D.
§=vD=diag(+/%) D=57S (15)
Substituting Eqgs, (14) and (15) into Eq. (5) yields the following kinetic energy expression.
T = -;—:‘:TCTS”'SC'.»’: (16)

By introdudng the same velocity coordinate vector n as in Ref. 2

n=5C: n=n(z)ci(z)) an

we obtain a new simplified expression for the kinetic energy. The mass matrix associated with 7 is
the identity matrix, so

T* =T} +T; + T = lq n+ GT(z,£)CTS 0 + To(z, 1) (18)

Note that T3 depends explicitly on 5. However, if we choose (z, £) as the independent set for taking
partial derivatives, we must recall that  depends on (z, Z). The z dependence s implicit in Eq. (14),
(15), (17) because S(z), C(z) parameterize M(z) = CTSTSC. Also note that T is equal to T (both
represent the same physical kinetic energy quantity), they differ only in their algebra.ic formulations.
The inverse mapping of Eq (17) describes the kinematic relationship between # and 7 similar to the
relationship of 6 and w in Eq. (13), except for the orthogonality of C and the diagonal nature of §
make the inverse near-trivial.

& =CTS 1y (19)

The partial derivatives of the system Lagrangian £ are now rewritten in terms of the new generalized
velocity vector 1 using the chain rule.!
oL or*  omTer ., .0T*
=05 Vo o -C "oy (20)

and
oL _ or* 20T 8V

I - — 2
%0z 7Y 55 s (21)
where J is the sensitivity matrix of n with respect to the state vector . This matrix is non-zero
since the C and S both indirectly depend on z.

_@_[3'7 _Q”_] (22)

~ Oz oz’ 'Oz,
Using the chain rule 8n/8z is expressed as ’
On as aC -1,
8z (azk + Saxkc ) § (23)

The partial derivatives of T* with respect to n and z are

‘Z] " =+ 571CG(a,1) (24)
T2 e, Bl @
With all these substitutions the Lagrange equations of motion in Eq. (7) become
4 (cmsn+6) - ors T _jrresmico)+ I mg-aTs (29
4
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After carrying out the time derivative and using the orthogonality of the C matrix, the following
first order differential equation is obtained.

T
7+S™ (C(':Ts +85-cCJT - C%-f- cTs-l) n=S8"'CF-BT\ (27)
where
B=ACTSs™! (28)
and
0 W _ 5, gren
F=Q-7 -G+ +J'57'CG (29)

The two first order equations (19) and (27) replace the classical second order Eq. (12). Eq. (27) is
an interesting new form of the well-known the Boltzmann-Hamel equation!+® for our choice of quasi-
coordinates 5. This diagonalized equation of motion is very similar to the one introduced in Ref. 2
except for the parameterization of the eigenvector matrix and the formulation of the Coriolis term.
Note that no matrix inverse needs to be taken thanks to the orthogonality of the C matrix. Inverting
the § matrix is trivial since it is a positive diagonal matrix. At this stage the expensive matrix inverse
problem has been traded for another problem involving finding the eigenfactor derivatives and the
sensitivity matrix J.

MASS MATRIX EIGENFACTOR DERIVATIVES

To solve the Boltzmann-Hamel equation, we seek auxiliary differential equations to yield the
eigenfactor derivatives with respect to time and the state vector z, since by solving these we can
establish the instantaneous C, S and J matrices. A very elegant square root algorithm* developed
by Oshman and Bar-Itzhack to solve the matrix Riccati differential equation is extended here to
solve for the mass matrix eigenfactor derivatives.

This square root algorithm works very well, even with repeated eigenvalues and clusters of near-
equal eigenvalues. Assume that the mass matrix M has k distinct eigenvalues, each with an algebraic
multiplicity of m;, then let the eigenvalues of M be ordered as

LS VIRURLCD VISR VRN T8 (30)
and equate this series to the series A1,..., . The ordered eigenvalue matrix D is then given by
D = diag(A1y...,An) (31)

Let c; be the i-th row of the C matrix. Since C is the transpose of E, ¢; is simply an eigenvector
written as a row vector. Let ‘c; be the i-th eigenvector corresponding to the j-th eigenvalue. All n
eigenvectors are ordered according to their respective eigenvalues in the following manner.

- 101 -
Micy c1
C=| : |= [ : } (32)
tex Cn .
[ ey

Every proper orthogonal matrix satisfies a differential equation of the form®

¢=-0C (33)
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where Q is a skew-symmetric matrix. All eigenfactor derivatives of M are expressed by a projection

onto Ci,...,Cn in terms of p;; ash?

pi; = ¢;M(z,t)ef (34)
The distinct elements of the  matrix elements aret?
e for -,"-_4~,| < Qmas
E §- i
[Q;j] = 0 for 5; = 3; (35)

Qmazsign (;}‘1_”;?—) for ;z‘i_'i;-:rl 2 Qmaz
where Qnqz is 2 maximum bound for the  matrix entries depending on the accuracy of the software
used. This term is included to smoothly handle the case where J; is almost equal to A;. Ref. 4 shows
that this slight modification has minimal impact on the accuracy of the solution. This is because
the eigenvector variations corresponding to the clustered eigenvalues have negligible influence on the
diagonalization of M.

4,7

The time derivative of the eigenvalues A; are™
A = pig (36)

However, the time derivatives of the eigenvalues are not required, but the derivative of the square
root of the eigenvalues. Let s; be the i-th entry of the S matrix. Using the chain rule, the derivative
of s; is

. 1.
8 = .2_8;A' (37)
This is written in a more compact form using the diagonal matrix I'
I’ = diag(pii) (38)
ast 1
$= Ers-l (39)

Substituting the above eigenfactor time derivatives into Eq. (27), the Boltzmann-Hamel equations
are reduced to
T
A+ 51 (ns + %1‘5-1 —cJT - CZG

= CTs-l) n=S8"'CF-BTA (40)
At first glance, Eq. (40) may seem more complicated than than the original equations of motion.
Keep in mind, however, that $and I" are diagonal matrices which greatly reduces the computational
burden.

To be able to calculate the sensitivity matrix J, we still need an expression for 8S/0z, and
8C/dz. Note that in the previous development of S and C it did not matter with respect to what
variable the derivative was taken. This allows 85/0z« and 8C [0z to be expressed in a very similar
manner as were S and C. Let ¥fi;; be defined as

o oM (z,t
kg = cj—a—a(:—:—)-c? (41)
and the diagonal matrix *T' be |
T = diag (") (42)
The partial derivative of S with respect to z; has the same form as the time derivative of S in
Eq. /eqrefdS1 as

05 1pcees
5o =3 TS (43)
6
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To find 8C/dzy, let the skew-symmetric matrix ¥ be defined as

o for | 52| < Qumee
= i i FR
k) = 0 for s; = s; (44)

. hp.
Qmaz sign (;39_—'%?) for I;;—E‘:'fa-l > Qmaz
8C/8zy is then defined analogously to the time derivative of Eq. (33) as

aC _ &
o = —0C (45)

Using Eqs. (43) and (45) 87/9zx can be written as

On _ (lo1kpg-1_ gk -1)
oy (25 'S S*QSs~t)n (46)

PFAFFIAN NON-HOLONOMIC CONSTRAINTS

If the dynamical system is unconstrained, then the Pfaffian constraint matrix B will be zero and
Eq. (40) is fully defined. However, if the dynamics are constrained through the Pfaffian constraint
surface given in Eq. (8), then Eq. (40) will need to be solved simultaneously with the constraint
equation. Using Eq. (19) we rewrite the Pfaffian constraint in terms of the new velocity vector 7.

ACTS 'n+b=0 (47)
which can be simplified using Eq. (28) to
Bn+b=0 (48)
The dynamic constraint equations is obtained by taking the first time derivative of Eq. (48).
Bi+Bn+b=0 (49)
Using Egs. (39), (33) and (28) B can be expressed as

B =(ACT + ACT — ACTS715)§7 = (ACT +ACT(Q— %S“I‘S")) s! (50)

To determine (7, \), Eq. (40) will need to be solved simultaneously with Eq. (49), we are led to the
differential-algebraic system

1 BT (#) _ (-5 (05+4rsT - CIT ~CRETCTS )+ STICF
= 2 . ) z (51)
B o)\x i

which can be written in more compact form as

ny_(m
s (2)= () ®
Since B is a mxn matrix, M, is a symmetric (n+m)x(n+m) matrix. A partitioned matrix
inversion formula? is used to find the inverse of Mz. Because of the use of the quasi-coordinates

n, the upper left partition of M; is a nxn identity matrix which simplifies the partitioned inverse
immensely. For this case the mxm Schur complement A reduces to”

A=BBT (53)
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Then the partitioned inverse of M; is

_ pTA-1 T A -1
IBABBA] (54)

M= [ A'B AT
Using M, in Eq. (54) the constrained differential equation of motion for n is
7= —BTA'B)a; + BTA™ a; (55)
The Lagrange constraint vector A is
A=A"'Bag —A"la, (56)

Note that if zero constraint is imposed on the dynamical system then Eq. (55) collapses back to
Eq. (40). If the number of system constraints m is small, then A~! could be inverted for each time
step. However, as m grows larger taking a numerical inverse quickly becomes computationally very
expensive.

Since A, for linearly independent constraints, is a positive definite symmetric matrix by Eq. (53),
it can be decomposed using the eigenfactor parameterization analogous to the mass matrix parame-
terization. Let Ca be the transpose of the eigenvector matrix of A, and let Sa bea diagonal matrix
whose entries are the positive roots of A eigenvalues. Then through a spectral decomposition A can
be written as

A= CESZSACA (57)

Since Cj is an orthogonal matrix and the diagonal entries of Sa are all positive, the inverse of A is
A =TS %Ca (58)

This direct inverse formulation reduces Eq. (55) to the following matrix inverse free formulation.
# = (I — BTCX5;%CaB)a; + BTCLS;*Caa2 (59)

Keep in mind that Sy is a diagonal matrix with positive entries. Therefor finding its inverse involves
only scalar inversions.

To update the Ca and S5 matrices without resolving the eigenvalue, eigenvector problem, their
time derivatives are found using the square root eigenfactor algorithm* analogously to finding the
time derivatives of C and S of the mass matrix M. Assume all eigenvectors and eigenvalues are
arranged as described in Eq. (30) and (32). Let ca, be the i-th row vector of the Ca matrix, then
Bij is defined be

Bij = ca;Ack, (60)
where the time derivative of A is . . . ,
A =BBT 4+ BBT (61)
and B was defined in Eq. (50). The diagonal matrix I's and the skew-symmetric matrix {2 are
then defined as

Ta= diag(ﬂ;,') (62)
i for | 74| < Qmaz
: ’a; 7% aj T4
[QA“] = 0 for 8A; = 8A; (63)
Qmazsign (;rg_";r') for | ;52! > Qmaz
a; ag aj ag
The time derivatives of Ca and Sa are then written as*
S'A = -;—I‘ASZI v (64)
Ca =—0aCa (65)
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SOLUTION METHOD OUTLINE

A method has been presented that brings a general class of constrained multi-body dynamics to
a form which completely avoids the necessity of inverting configuration-variable matrices to obtain
instantaneous accelerations. The form of the equations is very analogous to classical ”"dynam-
ics/kinematics” quasi-coordinate development of rigid body dynamics. The eigenvalue, eigenvector
problem is only solved once numerically to find the initial S(to), C(to), Sa(to) and Ca(to) matrices
as outlined in Figure 1. After initially ordering the eigenvalues and eigenvectors as outlined earlier
they will need need to be simply rearranged thanks to the square root algorithm. Instead of using
the generalized coordinate derivative & as the velocity measure, a new quasi-velocity 7 is introduced
to which corresponds an identity mass matrix.

To evaluate the eigenfactor derivatives it is assumed that M(z,t) and OM [z (z,t) are available
algebraically. This is a feasible assumption, especially in view of the several modern software packages
like Maple and Mathematica which can derive the mass matrix in an explicit algebraic form and
automate the generation of, for example, the C-code to compute M(z,t) and OM(z,t)/0z.

Kinetic & Potential Energy
Pfaffian Constraint

EOM
Pfaffian Constraint

Extract algebraic system mass matrix
expression M to find
M BM /axk

IR IDIIR S REINII PN IIIING -

Perform numerical spectral decompositions

for o
Clto) S(to) Calto) Salro) §

Numerically integrate the dynamical system

_(C3)  (CaSa)

P e————T—

n®

x(1)

Figure 1 Flow Diagram of Eigenfactor Square Root Algorithm

For a constrained dynamical system, traditional processes lead to the classical Lagrange equations
of motion coupled to second order differential constraint equations where a time and configuration
varying mass matrix needed to be inverted. In the present development, there are no matrix inverse
operations. These equations are mapped into a set of simpler nonlinear first order differential
equations. The second order differential equation for  is replaced with two first order differential
equations 7 and £. The mass matrix inverse problem is side-stepped by introducing the mass matrix
eigenfactor matrices and solving their usually well-behaved differential equations for § and C instead.
This method has no second coupled constraint equation, since the constraint force was already solved
for and back-substituted into the equation of motion for 7. However, this involved taking the inverse
of a symmetric Schur matrix A. This inverse can also be avoided very simply by using the eigenfactor
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matrices of the Schur matrix instead of the Schur matrix itself. Therefor, again a matrix inverse is
replaced by solving two first order differential equations Sp and Ca. Evaluation of operation count
and error propagation issues shows solving these differential equations to be vastly superior to the
conventional approach requiring matrix inversions.

To solve the above first order differential equations many types of integration methods could be
used. However, the Runge-Kutta type methods are not attractive since they require the derivatives
to be evaluated at discrete point between the time steps. This poses a problem when evaluating J
at these intermediate steps since it depends on 85/8z and 8C/dz. It would require resolving the
eigenvalue eigenvector problem at these intermediate steps to find the proper J matrix. Clearly not
a desirable solution.

In lieu of using Runge-Kutta or analogous single-step methods, it is recommended that a predictor-
corrector type method is used. These methods only evaluate the derivatives at the integration steps
and not in between them. A very stable and accurate predictor corrector type method is the
Hamming’s method.® Its accuracy is A%, comparable to the 4-th order Runge Kutta method. One
drawback of the predictor corrector method is that they are not self starting. Another method, such
as the modified Euler method,® can be used to establish the starting table.

DUAL-LINK MANIPULATOR SIMULATION

To demonstrate the eigenfactor square root algorithm, a constrained dual-link manipulator motion
is simulated. The shoulder joint is fixed and the elbow joint is free to rotate. The link from the
shoulder to the elbow has a length I; = 0.5 and the link from the elbow to the hand has a length
=1/ V2. Both links are assumed to be mass-less. The elbow mass and the hand mass are
m; = my = 1. The hand is connected to a point (0,4) through a spring with a stiffness K = 1. The
system constraint restricts the hand to move only horizontally as illustrated in Fig. 2. There are no
non-conservative forces or torques acting on the system.

()

PRAAUNON XN SRR RE SN

—X

Figure 2 Constrained Dual-Link Manipulator Layout
The hand coordinates (z,y) are given as
z =1 cosf; + 1z cosfy (66)

y=1sin8, +1;sinf, (67)
The system potential energy is the total spring energy given as

V(0) = 3K (4- ) +47) (68)
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The system kinetic energy is given as

T= %mllféf + %mz (lféf + 21315 cos (91 - 92)0'1@2 +l§0§) (69)
From the kinetic energy T the system mass matrix can be extracted.
_ (my +m2)i} malyl; cos (6, — 62)
M(o) - [m21112 Ccos (91 - 92) mzlg (70)

The eigenfactor square root algorithm requires an algebraic expression for M and dM/86). They
are found directly from the system mass matrix M in Eq. (70).

v A 0 . . molilysin (91 - thetaz)(éz - él)
M(e’e) - [m21112 sin (91 - thetag)(ez - 91) 0 (71)
_aM_ = 0 —m21112 sin (91 - 92) (72)
00, —mglyl;sin (91 - 92) 0
_aﬂ - 0 mzlllz sin (01 - 92) (73)
69, mylilasin (91 - 92) 0

The system constraint on m; is § = 0. Using Eq. (67) this can be expressed as A(6)8 = 0 where
A(9) =[lycos Izcos6;] (74)

The simulation is started at rest with ; = 0° and 8, = 60° and let run for 10 seconds. The
integration step size is 0.001 seconds. The resulting motion is shown in Fig. 3 below.

1

-1

Figure 3 Dual-Link Manipulator Motion

Clearly the Pfaffian constraint was successfully incorporated into the equations of motion. The
hand only moved in a horizontal manner. Not having to solve auxiliary constraint equations is
of great importance as the number of constraints increases. Since this is a very simple dynamical
system, an exact inverse was found of the system mass matrix and used to forward integrate the
classical Lagrange equations of motion to verify the new equations of motion. The results were
identical to solving the (7}, ) dynamical system.

One critical case of the eigenfactor square root algorithm is when two or more eigenvalues are
clustered very closely around one value. In this case elements of § could go to infinity. This case

11
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Figure 4 Time History of the Eigenvalue Square Roots

was resolving by putting an maximum bound on the magnitude of the eigenvalue square roots. This
bound is usually set to machine accuracy (i.e. 10'° for this simulation). As can be seen in Fig. (4)
the two eigenvalue square roots start out distinct and periodically become equal. The condition
8, = s; means geometrically that [§; — 6] is 90° or that the lower arm is perpendicular to the
upper arm. The eigenfactor square root algorithm did not appear to have any difficulty handling
this numerical singularity. Not even after repeatably going through this condition. These results
seem to confirm some of the robustness predictions made in Ref. 4 about the square root algorithm.

1.8-10"2+ , .
1640 ci ettt beeeeeens PP e
141011 : el .
1.2.10"3
1.0-10"24
8.010"
6.0-10"
4.010™
2,010
0.0 4
20107 %

-4.010"
0

Total Energy Error

time [s}]

Figure 5 Time History of the Total Energy Integration Error

Since all the forces and torques acting on the dual-link manipulator are conservative, the total
system energy should be constant. This makes the total energy a good integration error check and
is shown in Fig. 5. Since the motion starts out at rest, the integrations remains very small initially.
As the motion gains momentum, the integration error starts to accumulate very slowly. The forward
integration was performed with only performing the predictor and corrector process once. For the
same step size the error could be further reduced by repeatably applying the P-C method during the
forward integration. This is possible since P-C methods allow the integration error to be estimated
during the forward integration. -

CONCLUSION

The eigenfactor square root algorithm can successfully solve a very large class of nonlinear dy-
namical systems. The classical second order Lagrange equation of motion is replaced with two first
order differential equations by introducing a new quasi-velocity . Pfaffian constraints can be ac-
counted for directly in the new equations of motion. Constraint equations no longer need to be
solved simultaneously with the dynamical equation thus greatly reducing the computational burden.
Any inverse of a symmetric positive definite matrix such as the mass matrix is replaced with the

12
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problem of solving the respective eigenvalue and eigenvector matrix first order differential equation.
Numerical simulations for a dual-link manipulator confirm the validity of the method. Using the
square root algorithm for solving the eigenfactor differential equations appears to be very robust
even when some eigenvalues are clustered closely together.
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GLOBALLY STABLE FEEDBACK LAWS FOR
NEAR-MINIMUM-FUEL AND NEAR-MINIMUM-TIME POINTING
MANEUVERS FOR A LANDMARK-TRACKING SPACECRAFT

Hanspeter Schaub‘, Rush D. Robinettf and John L. J unk'msi

Utilizing unique properties of a recently developed set of attitude pareme-
ters, the modified Rodrigues parameters, a feedforward/feedback type
control laws is developed for a spacecraft undergoing large nonlinear mo-
tions using three reaction wheels. The method is suitable for tracdng
given reference trajectories that spline smoothly into a target state; these
reference trzjectories may be exact or approximate solutions of the
system equztions of motion. An associated asymptotically stable nonlin-
ear observer is formulated for state estimation. In particular, we illustate
the ideas using both near-minimum-time and near-minimum fuel rotafons
about Eulers principal rotation axis, with parameterization of the sherp-
ness of the control switching for each class of reference maneuvers. Lya-
punov stabilty theory is used to prove rigorous global asymptotic statility
of the closed-loop motion in the end game and during the tracking of the
reference motion. The methodology is illustrated by designing example
control laws for a prototype landmark tracking spacecraft; simulations are
reported that show this approach to be attractive for practical applicaticas.
The inputs to the reference trajectory are designed with user-contrcled
sharpness of all control switches, to enhance the trackability of the reler-
ence maneuvers in the presence of structural flexibility.

INTRODUCTION

Motivated by problems arising in the precision pointing of imaging satellites for
non-proliferation and environmental monitoring applications, there is renewed interest in the prob-
lem of rapid large angle maneuvers followed by precision pointing/tracking of landmarks from
near-earth orbits. Pointing and tracking tolerances for these imaging systems are on the order of
microradians. There are many contributors to pointing error, but the vibrational disturbances in-
duced by the effects of rapid maneuvers on flexible solar array structures are one major problem.
In previous studies!*? it has been shown that, assuming sufficient sensor and acteator bandwidth,
reaction wheel actuators can effectively control both the rigid body maneuvers and
fine-pointing/vibration arrest; however, the key issue is to perform the large maneuvers in a
torque-shaped fashion that minimizes disturbances of the flexural motion. Judicioas torque shap-
ing must be coupled with stabilizing feedback control to null tracking and fine poiating errors; this
is the approach pursued herein. We seek to extend the developments of Ref. 1,2 to establish a glo-
bally asymptotically stable nonlinear control design approach of broad applicability to general
three-dimensional pointing and tracking problems. .

« Graduate Research Assistart, Aerospace Engineering Department, Texas A&M University, College S=tion TX 77843.
+ Research Engineer at Sandz Natiorzal Laboratories, Albuquerque, NM 87185.

1 George Eppright Chair, Protessor of Aerospzace Engineering, Aerospace Engineering Department, Texzs A&M University,
College Station TX 77843, Feilow AAS.
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In recent papcrs3'9, the utility of a new set of orientation parameters (the modified Rodrigues
parameters, MRPs) has been studied. It has been shown that these parameters have some outstand-
ing properties. They appear to be the canonical three parameter set, owing to the following remark-
able truths:

e The nonsingular motion range encompasses £360 degrees, although the norm of the
parameters tend to infinity as £360 degrees rotations about any axis is approached.

e For rotations within 180 degrees about any axis, the parameters are bounded by a
norm of +1.

e The kinematic differential equations are quadratic nonlinear functions of the MRPs,
and have no singular points for rotations less than 360 degrees.

e The transformation from orthogonal components of angular velocity to the time de-
fivatives of the MRPs involves a coefficient matrix with orthogonal rows and col-
umns, thus the inverse is analytic.

e The MRPs are non unique, there are two trajectories corresponding exactly to a
given physical motion. One of the trajectories at any instant of time lies within and
the other lies outside a unit sphere. Both trajectories satisfy the same differential
equations, only differing in initial conditions.

Regarding the last property, it is easy to establish the transformation between the correspond-

ing points on the two trajectories, and this fact can be utilized to establish, for the first time, a glo-
bally nonsingular three parameter description of a generally tumbling rigid body.

These properties, together with recent results from Lyapunov control law design methods!?,
enable the formulation of a most attractive and effective family of control laws for spacecraft atti-
tude maneuvers and fine pointing. The control law design methodology is important in its own
right, as distinct from the use of the MRPs as orientation coordinates. In particular, however, this
control law design approach is especially attractive for this coordinate choice. The feedback law is
dominated by linear terms for this approach with a judicious choice of a logarithmic Lyapunov
function®. The analytical results presented herein are illustrated through a simulation study which
supports the efficacy and practicality of the concepts introduced. -

FORMULATION .

The Equations Of Motion For A Rigid Spacecraft

The spacecraft is assumed to have three reaction wheels with distinct inertia aligned with the
three body axes to control its attitude. Each reaction wheel inertia about the respective spin axis is
given by J‘.. Let the inertia matrix S contain the spacecraft and the transverse reaction wheel iner-
tia and let the matrix J be defined as

Ji 0 O
J= [ 0J2 0 ] 1)

0 0Js

Let (p/y be the spacecraft body angular velocity vector relative to an inertial frame N and let
the § vector contain the angular velocities of each reaction wheel. The rotational equations of
motion can be written as

8 dég/n

="‘[6)B/N]3(°B/N —[(-i)B/N]J(Q'l-G)B/N) —ﬁ+f C 2
where the control vector @ also satisfies the reaction axial wheel equation of motion:
dQ d(ﬁg/n)

€))

“= J(_d_t-+ dr

The tilde matrix [@] is defined as
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) 0 -0
[®l={ws 0 - @
- O 0

and the vector f is the sum of all external to ‘ques acting on the spacecraft. These torques are
in part due to aerodynamic and solar radiation drag and are usually considered to be very small
compared to the internal torques being applied. They are assumed to have a known bound F
which is defined as |f;| < Fi-. :

Attitude Coordinates _
All spacecraft orientations are described using sets of modified Rodrigues paramete 49

They are a minimal coordinate representation of a rigid body attitude with several useful attrib-
utes. They can be defined in terms of the Euler parameters (quaternions) as

B: .

= =1,2, 5

o1 =1 Bo i 3 ()]

or in terms of the principal rotation axis & and the principal rotation angle ¢ as
G=2¢-tand/4 ®

Obviously they go singular at a principal rotation of +360° where Bg — —1 . What makes
this set very attractive is that this singularity can be completely avoided by making use of the fact
that the modified Rodrigues parameters are not unique. Notice that reversing the sign of the B’sin
Eq. (5) generates a second set of 6’s. The alternate set is called the “shadow set””, and goes singu-
lar at zero rotations and is very well behaved around the +360° rotations. Hence, if a singularity is
approached with the original set, one can switch the attitude description to the “shadow set” and
avoid the singularity at the cost of having a discontinuity at the switching point. The transforma-
tion between “original” and “shadow” set is "

o) =-0;/6'6 i=123 | Q)

Keep in mind that the choice in distinguishing “original” and *“shadow™ sets is purely arbitrary.
Both sets describe the same physical orientation. In this study the switching condition was chosen
tobe 676 =1. This causes the magnitude of the orientation vector to be bounded between
0<5| < 1. Interms of a principal orientation angle this means that the angle is restricted to be
within — 180° < ¢ <+ 180° . Note that this combined set of “original” and “shadow” parame-
ters implicitly “knows” the shortest way back to the origin4. Lengthy principal rotations of more
than 180° are avoided. This will be useful when designing a robust attitude feedback control law.
Also note from Eq. (6) that for the range — 180° < ¢ <+ 180° the modified Rodrigues parame-
ters behave very linearly. The differential kinematic equation of motion in terms of the modified
Rodrigues parameters is given below . Note that the equation only contains second order polyno-
mial nonlinearitiesin G . ,

ds _1[f1-8676\ ... ..r]-
& 2[1( > )+[o]+oo ]m 8)

Eq. (8) holds for both the “original” and the “shadow” set. This means that the derivative is

well defined even at the switching point. The direction cosine matrix in term of the modified Ro-
drigues parameters is

. 4(0? -0} —03) + 22 80102 +403% 86,03 — 402X
5)=— - 2
C(6) = s 676)2 80,02 —403X  4(-0? +03 —03) + 32 80,03 +401Z ©)
80103 +40,% 80,03 +451E  4(-0}-oc%+0%)+2?
£=1-5"6
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OPEN-LOOP DYNAMICS

Rest-to-Rest Principal Rotation Reference Maneuver

Instead of doing a computationally expensive optimal control, all maneuvers performed will
be about the principal axis of rotation. This will allow real-time pre-computation of the reference
maneuvers. This solution is close to the optimal solution and much faster to compute. Euler’s prin-
cipal rotation theorem states that any reference frame can be related to another reference frame
through a single-axis rotation. This theorem allows any three-dimensional rotation to be viewed as
a single-axis rotation about the principal axis, as illustrated by the simple one-dimensional equa-
tion shown below.

S6=u (10)

While certain gyroscopic coupling nonlinearities must be accounted for, since the actual mo-
tion will be fully three-dimensional, Eq. (10) provides a simple approach to design a reference tra-
jectory. Let N denote the inertial and R denote the open-loop reference frames. The initial and
final reference attitude can be established by the initial and final direction cosine matrices

[RN(t9)] and [RN(#r)] inthe sense

F(tr) =[RN(t)]A(tr), - F(to) = [RN(t0)]7i(t0) (11ab)

The rotation from the initial to the final position of the body axes is established by a direction
cosine matrix [RR(#s,10)] , where

7(tr) = [RR(t7,10) IF(t0), [RR(t7,10)] = [RN(t;) JLRN(20)1" (12a,b)

Euler’s Principal axis of rotation is determined by finding the eigenvector of [RR(ty, )]
which corresponds to the eigenvalue +1; that is, we find the components {I1,l2, I3} of the unit -

vector satisfying
L hy
[RR(tf,to)]{lz} = {lz} =1 (13)
I3 L5} :

The principal rota%ion angle O can be found by extracting the diagonal elements from the
[RR(ts,%0)] matrix®. We limit our principal rotation angles to be within 0° <0 < 180° ,
which is done automatically when using the inverse cosine function below.

0= acos(tmce([RR(;f 1)) = 1) (14)

The principal axis of rotation can also be found!, except near the zero and £180° case, from
the matrix elements of [RR(t7,%0)] -
- {gﬁn - gn} 5)
== 31 — RRy3 a
2Slnef RRy2 — RRy

_ Taking the inverse kinematics viewpoint, we can prescribe a reference trajectory 0,(t) asa
rotation about the principal vector of [RR(#s,10)] . For the reference trajectory to conform with
the desired initial and final attitude, it is nécessary that ©,(f) satisfy the boundary conditions
0,(0) =0 and 0,(tr) = 6.

Using the reference principal angle 0,(¢) and the principal axis of rotation I', we can define
the reference orientation, angular velocity and angular acceleration as
6.(1) do,

py=1- tan—4— o, () =10,(8), ar

where p(t) is a modified Rodrigues parameter vector which parameterizes the direction co-

() =16,() (16a,b,c)

4
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sine matrix [RR(tf,%0)] . Given the above reference body angular velocity and acceleration and
assuming no external torques, the reference control torque can be found using Eq. (2) with.
dd I . =
7 =_s"‘7t£—[wrlsmr—[mr]-,(gr+mr) (17)

Near-Minimum-Time Maneuver

The optimal control for a rigid body minimum time maneuver is a “bang-bang” type control.
For a rest-to-rest maneuver through a principal angle O , the “bang-bang” control has the struc-

ture:
. t /439 [48, o _u
u(t):u,,mszgn(t—-g—), t = ; /- ,é__f_, emax.—__'g_ﬁ‘_

where Opmax and Umax are one-dimensional quantities measured along the principal axis of ro-
tation.

If we anticipate that the “bang-bang” control will excite significant vibration of the flexible de-
grees of freedom, it is easy to smooth out the control switches using cubic splines and introduce
“controllably sharp” torque switches using the smoothed “bang-bang” control shape™:

TR ¢
T
o]\ oty
1, athtS%—atf'—-:tl
o . 2
0, (1) = Omax? 1_2(5‘_&) (3_2(?_—}_‘_)), 1 StS-tL+(1tf'-—:t2 (18)
O.tf (ltf 2
-1, <t<t-Qs =13
— 2 —
t—l+(' t’) (3-2(——‘ t’)), 13 <t<ty
o373 oy

where o controls the sharpness of the switches. o= O generates the “bang-bang” instanta-
neous torque switches and o = 0.25 generates the smoothest member of the family. After carry-
ing out the double integration, the final maneuver time is found in terms of the principal angle ro-
tated Oy , the maximum principal angular acceleration gy and the smoothing factor ..

4ef 1 o2 umx
tr=,/=—. s Omax =—— 19a,b
4 \/ew 1-20+2a mrTg (192.6)

The resulting principal angles and angular velocities can be scen in Figure 1, where 0. =0.1
was chosen. Obviously the maximum increase of maneuver time ( for o =0.25) is less than 38%,
compared to the “bang-bang” ( &t = 0 ) case. For a flexible spacecraft, due to the decrease in vi-
brational energy, the actual maneuver time (including vibration settling time) is typically de-
creased significantly by using the smoothed “bang-bang” control. Even though we are not specifi-
cally considering the flexible spacecraft case at this point, we can implicitly consider flexibility by
eliminating sharp torque switches which can be anticipated to “fing” the structure. Qualitatively,a
sufficiently smooth and low amplitude torque history will make the most flexible structure behave
more like a rigid structure and make the corresponding reference trajectory “more trackable.”
These statements can be made quite rigorously, see for cxamplel . For well-chosen reference ma-
neuvers and tracking law design, maneuver times for flexible spacecraft can usually be kept within
10 to 20% of the theoretical rigid body minimum maneuver times.
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Figure 1 A Sample Torque Shaped Family of Near “Bang-Bang” Maneuvers
Near-Minimum-Fuel Maneuver

The torque time history of a optimal rigid body minimum-fuel maneuver consists of a sharp
initial impulse to get the spacecraft rotating, a long coasting period, followed by a sharp reverse
impulse to arrest the motion. Naturally, these sharp impulses would cause havoc for a highty flex-
ible structure. Therefore a smoothed “bang-off-bang” control is chosen similar to the
near-minimum-time maneuver presented previously.

({ ¢t \? t
) bfl))  osisou
oty oty
1, oty StSouty +0otr =1
2
t— th—t
2—5) (3-2(—2——)), 1 <t<20ut + 00t =10
ot oty :
6,(2) = 6,nar{ 0, 1y St<tr—20,t — Oty =t3 (20)
_(f:ﬁ)’(3_2(5:£)) fy SEStr— b — Olaty = 8
ary ae ) 3SIS -Gl -0l =1y
-1, 1 St<tp—Qutp=ts
tr —1\2 tr—t
{ oty oy tr

The instantaneous control switches are replaced by cubic splines with the rise and decay shape
having controlled sharpness. Hence two torque smoothing factors 0j and O are used. The fac-
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tor o determines the rise or fall time from or to the maximum torque to zero torque as a percent-
age of the total maneuver time. The factor 0z determines how long maximum torque is applied,
also as a fraction of the total maneuver time. The amount of fuel used is chosen implicitly by spec-
ifying the two parameters 0 and Ol .

The total maneuver time for the smoothed “bang-off-bang” control is found again by twice in-
tegrating the one dimensional principal rotation equation.

46, 1 “ Umax
tr =, |=——. y Omax =——— 21ab
s \/e,,m oy +0p-202 -30q0 -0’ 8 (21a.0)

The sample time history of principal angular acceleration, velocity and the principal angle for
a smoothed “bang-off-bang” control is shown in Figure 2, where 01 = 02 = 0.1 were chosen.
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Figure 2 A Sample Torque-Shaped Family of Near “Bang-Off-Bang” Maneuvers
Incorporating Angular Velocity At The Final Maneuver Time

The principal rotation maneuver presented only applies to a rest-to-rest maneuver. To track a
landmark, it is desired that the body have a certain angular velocity @(#r) at the end of the ma-
neuver. This allows the spacecraft to keep the sensors pointing toward a location on Earth for a fi-
nite duration of time and essentially achieve gross “motion compensation” for smear-free imaging.
To accomplish this, the reference motion will be described relative to a moving target frame, not
the inertial frame. Three coordinate frames are used:

R: open-loop reference coordinate axes ( or follows the desired trajectory)

T: target motion coordinate frame

N: inertial coordinate frame

IR




Let @7y be the body angular velocity vector of the target frame. In order to match up with
our desired motion, the target frame T must have the following constraints.

orn(0)=0  drn(t)=(t) (22a,b)
[TN(tr)] = [RN(1r)] (23)

Since the rest-to-rest principal rotation is described relative to the T frame, these conditions in-
sure that the actual reference motion will have zero inertial angular velocity at £=0, and the desired
orientation and angular velocity at the maneuver end.

Besides these three conditions any target motion can be chosen. The target motion used in this
study was chosen to be a pure spin rotation about the (o(tf) axis, since an analytic solution exists
for this trajectory. The orientation of the T frame at any time ¢ is given as

(TN()] = [TT(t, 1) )TN (xr)] @9

where the matrix [TT(t, ;)] describes the pure spin motion away from the final target posi-
tion. Let the modified Rodrigues parameter vector jr parameterize the [TT(t,1¢)] matrix with
the condition that pr(t;) =0 . The unit vector [T is the principal axis of the target motion and
is defined as

» _ o(y)
It = (25)
|&(z)]
and O is the target principal rotation angle. The target motion pr(r) isthen defined as
= » 6
Br(0)=1Ir-tan=" : (26)

where Or(tr) =0 . To match initial and final conditions of the target angular velocity a
cubic spline was used. By choice, this will result in the reference motion having no angular accel-
eration at the maneuver end, but this is not a requirement of the method itself. Any target angular
velocity history that matches the conditions in Eqgs. (22a,b) could have been used. The target angu-
lar velocity and acceleration are defined as:

2
~ . t t\ »
B () = lmT/N(ff)l('t“) (3 —2—) Iy @27
' i
_ - 2
me/N(t) = |O)T/N(tf)l (6_t__6(L) ) . i‘r (28)
dt I iy \y
After once integrating Eq. (27) the target principal rotation angle is found.
_ lorpl ¢ 5
0r(t) = — <t<
r(1) 2 £ %2 <t . (29)

_The relative position of the reference frame to the target frame is given by the matrix [RT(1)]
which is found through

[RT(6)] = [RN(OUTN(OT . (30)
Atthe times fo and f; the relative orientations are defined as
[RT(10)] = [RN(t0) [ TN(t6)1" 31)
[RT(t;)] = [RN(t) I IN(#y)]" =1 (32)
Eq. (12b) is now rewritten as
8
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[RR(ty+10)] = [RT) [IRT(10)1" = [RT(10)1" (33)

The matrix [RR(#f,9)] defined in Eq. (33) is used to define the rest-to-rest principal rotation
motion for the case where the reference motion is supposed to have a final angular velocity.

Given the maneuver time #r , we would be able to accurately describe the complete target mo-
tion. To find s though, we need to know the [RR(ty, to)] matrix first, which itself depends on
the target motion. Since we only know the final, not the initial target position in advance, no
closed form solution is available to find # . An iterative method was used to find the maneuver
time. The initial estimate for #r was found by assuming complete rest-to-rest motion. Using this

tr anew [RR(tf,f0)] matrix was found and with it a new fy . This method converged very
quickly if half of the difference between old and new f was added to the old 1 .

The matrix [RT(#)] is givenas
[RT(1)] = [RR(t.£0) 1(RT(t0)] (34)
where the [RT(fo)] matrix was defined in Eq. (31). The desired reference motion relative to
the inertial frame is found from Eq. (30) tobe
[RN(1)] = [RT()J[TN(1)] €8))
where the target motion [TN(t)] is given in Eq. (24).
The angular velocity and acceleration expressed in Eq. (16b,c) are now expressed relative to
the target frame motion. Hence, let us relabel these quantities as expressions relative to the target
frame as

i} . daf (1) _ da (1)
Fr@O =61, — —=—p

where the superscripts indicate in which coordinate frame the vectors are written. The refer-
ence angular velocity expressed relative to the inertial frame is givenas
@ = Sy + [RTIOT N (37)

To find the reference angular acceleration relative to the inertial frame, the inertial derivative
of Eq. (37) is taken.

(36)

R \N d,. R \R . = 1 d,_r \R
fn) = (@) + [Orw R = = (@)
dof doly . ,
~SORT R IR [@R 7 ) (RT1OT
d: dt
For the limiting case where the target frame has zero motion, Eqgs. (37) and (38) collapse back
to the rest-to-rest case given in Eqgs. (16b,c).

(3%

3

CLOSED-LOOP DYNAMICS

Lyapunov Method To Design Nonlinear Tracking Control Law

A nonlinear tracking control law is developed to assure that the reference trajectory is asymp-
totically tracked. One advantage of this noalinear control law over other control laws is that it is
globally, asymptotically stabilizing! The coatrol law has inherently no restrictions on the size of
the attitude or the angular velocity error. Secondly, through the choice of the aritude coordinates,
this control law will bring a body, which has tumbled beyond +180° from the reference motion,
bagg to the reference trajectory through the shortest angular distance. The three coordinate frames
used are: '

B: actual spacecraft coordinate frame

230



R: reference coordinate axes
N: inertial coordinate frame

Let the [BR] matrix define the relative attitude of the spacecraft to the reference frame. It isre-
lated to [BN(t)] as .

{BR] = [BN][RNY (39)

Let the modified Rodrigues parameter vector & parameterize ths direction cosine matrix
[BR]. This vector defines the orientation error of the spacecraft relativz to the reference frame;
achieving & — 0 assumes asymptotic tracking of the reference motion. The extradition of the &
vector from the [BR] matrix is easily accomplished by use of the Bo Eder parameter. The com-
plete transformation is given below.

2B =+\/trace([BR]) +1

G _BRz;—BR;;z

' 4Bo(1+ Bo) "
o, = BR31 = BRi3 (40)
2 ™ 4Bo(1+Bo)

_ BRi2 —BRy

%3 = 2Bo(1+ Bo)

By assuring that Pp 20 we are guaranteed to have a modified Rodrigues vector® with
|5] €1 . By using the modified Rodrigues parameters to describe ths error in orientation, the
feedback control law will inherently know the “shortest way” back to th= reference frame. As an
example, if the spacecraft has rotated a principal rotation of +200° off fom the reference condi-
tion, the control law will know to let the spacecraft complete the rotation. It will perform a +160°
principal rotation instead of a -200° maneuver, bringing the spacecraft bxck to the reference state
“the short way round™".

Obviously, it is desired to make the body frame track the reference fame, and thus the objec-
tive of the tracking control law should be to make any departure motion & vanish. Let all the fol-
lowing vectors be written in the body frame B, unless noted otherwise. The error in body angular
velocity is given as

& = Ogv — [BRIOy (41)
The reference body angular velocity vector must be transferred into fie body frame, since it is
only given in the reference frame R. The error in body angular accelerarion is found by taking the
derivative of Eq. (41).
d .. d,. d . - -
= (8®)" = (@ )" — [BR1— (®riv)" + [@sw JIBRIGR 42
dt dt dt
The Lyapunov function for the feedback control law is defined to be
V=567 350+ 2Klog(1 + 573) 3)

where K is a scalar gain for the astitude error feedback. Using the lozarithm of the departure
motion will result in a feedback control law which is linear in & . As,;g'siouas points out in Ref.
5, this remarkable fact occurs becamse d/dr (210g(1 + 676)) = 3®'G .To guarantee global

asymptotic stability, let us verify that the first time denvative of V is negazve definite.
V=5673 2 (60)" +K 8475 (44)

Substituting Eqs. (42) and (2) into Eq. (44) yields

10
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V=5a" (— [@s/n 1S @ — [®sn ]J(Q + G)B/N) -1 +f
d,. N - - . (45)
- S(BRI (Ggm )"+ S[0an BRI +K3)
After defining the control torque vector & to be
. d,.r W ¢ B,
& =- s(tBr15 (efw)" - (o (BRIOK
(@B ]38 - [0 (O + @)+ KS® + POO" + F

where F is defined as10

(46)

Fi=F;-sgn(d®;) i=1,23 47)

and the matrix P is a positive definite angular velocity feedback matrix, and substituting &
into Eq. (45), V is shown to be negative definite.

v =-8&T P -850 (F-f)<0 Vi®,6#0 (48)

For clarity, all vectors were labeled with their corresponding coordinate frame in Eq. (46).
The control torque given above is dominated by linear terms in the position error G and the angu-
lar velocity error 8@ . It guarantees global asymptotic stability during both the tracking and the
end game phase, assuming, of course, negligible model errors and perfect state measurements.
Proper gain selection will result in a good rejection of model and external disturbance errors.

Because of the sgn function in F this control law could cause some chattering if the angular
velocity measurements are noisy. If the magnitude of F is small enough though, this should not
pose any practical problems. Having the F term in the control law does guarantee asymptotic con-
vergence of the states to the target motion, even with unknown external forces present.

Control Feedback Gain Selection

Assuming zero external torques, the closed-loop dynamics are found by substituting Egs. (2)
and (42) into Eq. (46). The resulting differential equation only depends on the attitude error 3]
and the body angular velocity error 8@ .

5;(550)” =-K-37'6-371P® 49)

Note that the differential equation for 8® is linear without making any approximations. The

nonlinearity of the closed-loop dynamics come in through the coupling with & . If =0, then

the poles of Eq. (49) could be arbitrarily chosen. The differential equation for & depends quadrati-
cally on G and is given by:

ds 1[(1-8"68\ .. ~.T]s-
=3 [1( 5 ) +[5]+G6 ]Sm (50)
After linearizing Eq. (50) about & = 0, the following approximation is obtained

ds o0

Iy -~ 6D

Remember that the modified Rodrigues parameters act like angles over four. This fact is vis-
ible again in the above approximation. Because of this, the linearization using modified Ro-
drigues parameters will be valid for twice the rotation range compared to the classical Rodrigues
parameters, and four times the range over the most attractive set of Euler angles. After combining

Egs. (49) and (51), the following closed-loop system equations of motion are found:

11
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d _.N

—=(6) 1 =

dt - [ 0 0 41 ][0-] (52)
-k.g°! _g-1pJ]lo®d

Given an arbitrary inertia matrix S , a root-locus method could be used to find the poles of
Eq. (52). The roots cannot be placed arbitrarily because K is only a scalar gain. If the inertia ma-
trix S and the angular velocity feedback matrix P are chosen to be diagonal matrices, then Eq.

d ...N

(52)canbe decoupled into three sets of two equations

. 0 1 G
Ci |_ 4 i .
5(3)[] - [—%(.- —%][8&)‘] i=1,23 ©3)
whose roots can be solved explicitly as
__Me [ K (&) Mo [ K (B
h= 2(3;" si*"(s,)] and 1= 2(5, 5+ (&) G

Note that the only approximations made in the above analysis are the linearization of Eq. (50)
and the assumption of a diagonal inertia matrix 3 . Since the linearization of the modified Ro-
drigues parameters are valid for four times the rotational range of the Euler angles, and the off di-
agonal terms in the inertia matrix are usually very small compared to the diagonal terms, this line-
arization will typically predict the dynamics of the nonlinear system for moderately large tracking
errors.

Figure 3 shows the root-locus plot of Eq. (54). A separate p; can be chosen for each body

axis, but only one attitude error feedback gain X can be chosen.
A

A Im
2
p.
k=2 _
K=0 3 ?‘0
\ - \ 3 14 Re
_Pi Py o
Si 231'
V'z

Figure 3 Root-Locus Plot of the Decoupled, Linearized Error Dynamics

Assuming that the closed-loop dynamics will be slightly under-damped, we can write the angu-
lar velocity feedback gains p; in term of the controller decay time constants T'¢ .
p=2822 =123 (55)
T

The scalar attitude feedback gain K is still free to be chosen. For the close-loop dynamics to
be under-damped, the condition on K is
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pz
K> i=1,23 (56)

Note that both K and p; determine whether the closed-loop dynamics are ov-r-, critically-, or
under-damped. But if the system is under-damped, then only p; determines how fast a state error
will decay. On the other hand, the gain X influences the frequency of the oscillations @, .

coc,.=-;— %-(%)2 K=si(m3,.+(g—"‘_)2) i=1,23 (57a.b)

Control Gain Scheduling

To avoid reaction wheel torque saturation, the feedback gains are lowered whenever the
system motion error is too large. We suggest a simple heuristic for gain scheduling, which can be
sophisticated as necessary. The total system error is calculated as a weighted sum of the attitude
and angular velocity error vectors.

error = |0®| + x - |G] (58)

If this measure of tracking error exceeds some nominal value, the gains are lowered to some
smaller values. Whenever the error is within the nominal value, the gains are then raised again to
their original values. This assumes only two sets of gains, obviously more than two sets could be
used.

The body angular velocity feedback gain matrix P can also be permitted to vary with time
without any loss of stability of the control law given in Eq. (46). The only requirement is that P re-
mains positive definite. The attitude feedback gain K, however, was considered to be constant dur-
ing the stability study. Allowing K to vary in time, Eq. (44) is rewritten as

v=8a7(S g; (80)" + Ko + K2log(1+575) =307 Pa0 + K2log(1+578) (59

If K is changed from a high gain to a low gain, (i.e. a large system error is present), K isnega-
tive and stability is still guaranteed during the transition phase. Only if Kis changed from a low
gain to a high gain, where K >0 , is stability possibly not guaranteed. If K is large enough, V
could become positive. However, since the transition will occur oyer a finite period of time, over-
all stability is not compromised. Also, the maximum positive K is computable at any time to
satisfy V < tolerance as '

tolerance + 8@ P5®

2log(1+675) ©0)

Kmax =

Obviously instantaneous jumps in feedback gains should be avoided, because they would
cause excessive ringing of the flexible structure. To control the smoothness of the feedback gains
time history, a digital low-pass filter is added. Any jumps in feedback gains are thus filtered out to
a smooth curve with a controllable rise of K .

STATE ESTIMATION

The purpose of this nonlinear estimator is to cancel any measurements errors in the body atti-
tude vector § (given in modified Rodrigues parameters) and the body angular velocity @ , evenin
the presence of an unmodeled external torque f and a gyro rate bias b . Let the measured states
be denoted as X, , the estimated states as X, and the actual states as X .

_ i_j.’" ~ -?._e:x K
Xm= Om Xest = West X= [(E):l 61)
bm bes: b
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The rate gyro bias b is assumed 1o be constant for small time intervals, thus having the follow-
ing kinematic equation

d,-
% (2)=0 (62)
Let the estimator error be defined as
Ag
e=Xeq~X= [A@] (63)
Ab
From Egs. (2,8,62), the actnal system dynamics can be written as
d oo eon [0 0
—(X)=FX)-|s'a|+|d (64)
dt o Jd Lo

where the F() function contains the dynamical system. The angular acceleration d due to the
unmodeled external torques is defined as

d=37'f (65)
and is assumed to have a known bound D satisfying D; > d; . If the bounds of the rate gyro
bias error Ab and of the angular accaleration due to external forces d are known, then the follow-

ing dynamics of the estimated state scan be shown to be asymptotically stable for arbitrary large
estimated state attitude and angular vzlocity errors.

d .. ) 07 0 Ey ) ) 0
Z;(Xw) = F(Xm - [bm l) - [s—*a] - [Ea)] —H(Xm —Xm + [bm]) (66)
0. 0 0 0

The estimator feedback gain matix H is positive definite and partitioned as

Hy Hy Hys
J=|Hy Hpn Hp
H3 Hi3 Hai

Similarly to Eq. (47) of the feedbzck control law, the vectors Eq and E‘g, are defined as
[Ez]; = mzx(abs([H12Abmaz ];)) - sgn(AgG)) : (67)
[Ea); = max(ebs ([HzAbmax];) + Di) - sgn(A®;) (68)
The asymptotic stability of Eq. (66) is proven with the Lyapunov function
1

V=§zTé (69)

Let the measured states be broksn up into the true states, the random white noise ¥ and the
rate bias components.

0
X,,,=X+v+[5] (70)
0

By enforcing the asymptotic stabnhty requirement V < 0 and by making use of Eqgs. (63), (64)
and (66), the following asymptotic stzbility condition is found.

éT(F(X+ V- [%D - F(X) +H\7) —A7" (Eg + Hi2Ab)

—A®T (Eg + d+ HpAB) — A H33Ab < & He

(71
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Note that since H is positive definite, the right-hand side (RHS) of Eq. (71) will always be
greater than zero for €#0 . Assuming there is no measurement noise, no rate gyro bias and no
unmodeled external torques, than the estimator dynamics in Eq. (66) is globally asymptotically
stable. We offer the following qualitative observations regarding tuning of the estimator.

If an unmodeled external angular acceleration d is present with a known bound D , then the
estimator dynamics are still stable, since the_AZjT term of the left-hand side (LHS) is guaranteed
to be negative definite by the definition of Ej . Stability is still guaranteed for any positive defi-
nite H and any estimated attitude and angular velocity errors.

If a rate bias b is introduced with a bounded error Ab , then H can no longer be arbitrarily
small. The first term of the LHS could be positive. The estimator feedback gain matrix H must be
chosen large enough such that &! Hz is always larger than the first term of the LHS. The second,
third and fourth term of the LHS are guaranteed to be negative definite by the definition of Ej
and Eg ,and because H33 is positive definite.

Once white measurement noise is introduced, the estimated states will not converge to the ac-
tual states of course, but will oscillate about them. While doing discrete sampling of the states at
At intervals, the dominant noise term of the estimator dynamics is Hyv . The actual jump due to
noise from one sample to another is bounded by HVpmaxA? . To further adjust the filter characteris-
tics, the sampling time interval can be tuned. The measurement noise also has a second degrading
effect. It may cause the sgn functions in Egs. (67,68) to return an incorrect sign of Ag; and A®; .
This will cause a secondary noise induced effect of the estimated states between samples, of the
order of EAt and EgAt respectively. Again the filtering errors are controlled by choosing the
sampling interval.

Under- and over-damped estimator dynamics were compared. For a given decay time con-
stant, the over-damped system was better able to cancel measurement noise than the under-
damped system. To assure that all the attitude and angular velocity measurement errors decay at
the same rate, the estimator feedback matrix H was chosen to be of diagonal form.

Heg-I 0 0
H:[ 0 Hy-I 0] (72)
0 0 Hj;

Writing the estimator feedback gain H,g in terms of an estimator error decay time constant
we get :

Hy =T (66)

The estimator feedback gain Hj can have a much larger decay time constant than Hg ,

since the rate gyro bias is assumed to change very slowly. Having a small H, helps in reducing

the secondary noise effect for the rate gyro bias estimation. In practice, we may use the above esti-

mation algorithm to baseline a Kalman-Filter, or other linear state algorithm, appropriate for
real-time on board implementation.

RESULTS

The following figures show the results of_rigid body rotation simulgtion. The body inertia ma-
trix 8 has only diagonal entries of 200 kgmz, 200 kgm2 and 118 kgm* corresponding to the first,
second and third body axis. The spacecraft has three reaction wheeli aligned with the body axis
whose inertia about the rotation axis are 0.00955 kgm2, 0.1240 kgm* and 0.00955 kgm2 respec-
tively. The maneuver takes the spacecraft (in 3-2-1 Euler angles) from (-4°,-55°,4°) to
(4°,55°-4°). The rotation is mainly about the pitch axis with some slight yawing and rolling. The
craft starts out with zero angular velocity and is required to have a final angular velocity of -1°/s
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about the pitch axis at the end of the maneuver. The error in initial attitude and angular velocity is
(-0.05°,0.8°,0.05°) and (-0.025°/5,0.1°/5,0.025°/s).

The feedback control law was chosen to have a time constant TC of 4 seconds and an attitude
feedback gain K of 44. This results in the feedback response in the pitch and yaw axis h:wving a
damped frequency of 9.05 °/s, and the roll axis having damped frequency of 14.4 °/s. The estima-
tor time constant T, was set to be 0.4 seconds, an order of magnitude faster than T. The initial es-
timated 3-2-1 Euler angles were (-4.1°,-55.5°,3.95°). The attitude noise measurements were sub-
jected to random noise of the magnitude of 4e-5 (given in MRP). The initial estimated body angu-
lar velocities were (-0.02°/5,0.15°5,0.03°%/s). The angular velocity measurement noise level was
set to 5e-5 °/s.

oo I N N O T = =
E 0.24F "~ : _---L___-g--___f———-: _-_1;;7% E— i _ -
R R T e B e smcbomcbones
> B b b e e b T e 2XiS 2 (Open loop)
g 0.02] i " i P 7 :

2 008tk bl a2 (closed Toop)
= B IS SRR PP, AU SOV MR M ey e g et
R e e e B s E S S b
-0.30 T ——t—t—

0 10 20 30 40 50 60 70 80 90 100 110
time [s]

Figure 4 Open- and Closed-Loop Attitude for 2nd Body Axis

The total maneuver time was 104.09 seconds. Figures 4 and 5 show the attitude time history
in MRP space. The closed-loop motion accurately tracks the open-loop trajectory. Figure 4 shows
the large pitching maneuver. Since a final negative angular velocity is required about the 2nd body
axis, the craft has to rotate beyond the target attitude and return to it with the desired angular veloc-

ity. The open-loop maneuver designed in this paper performs this task in a very smooth and
near-optimum fashion.
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W 0.023 - po---p----t - i
- f { ¥ 3 H
€  00If==tomd
& R e i fre==axis 3 (open loop)
3 0.00Z'f'“‘T""":‘“"z“‘"‘;'\ ":*"""z” ***** axis3l((¢i:(;’se:dli)op))
32 I e ey sy R, N S axis 3 (¢ oop) |
.g -0.01: § :" { i_ r\’\\fr\ ————— a.xic 1(closed loon)
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-0.03 T : — } —t T : T = — 1+ f——t
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time [s

Figure 5 Open- and Closed-Loop Attitude for 1st and 3rd Body Axis

Figures 6 and 7 show the time history of the angular velocities. The open-loop maneuver cor-
rectly ends with a zero angular velocity about the 1st and 3rd body axis, and with -1°/s about the
second body axis with no angular acceleration. If a final angular acceleration is required, this
could easily be incorporated into the target trajectory used to generate the open-loop motion.
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The initial state errors are canceled by the feedback control law and the open-loop trajectory is
tracked accurately. '
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Figure 6 Open- and Closed-Loop Body Angular Velocity for 2nd Body Axis
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Figure 7 Open- and Closed-Loop Body Angular Velocity for 1st and 3rd Body Axis

Figures 8 and 9 show the time history of the internal control torque exerted onto the three reac-
tion wheels. The maximum torque encountered is 0.3108 Nm by the second reaction wheel. The
measurement noise is not visible in Figure 4 because of the relatively high torques. The
closed-loop time history appears smooth and asymptotically approaches the open-loop torque time
history.
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Figure 8 Open- and Closed-LoopControl Torque for 2nd Reaction Wheel
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The measurement noise is visible in the time histories of the 1st and 3rd reaction wheels, since
they are only exerting relatively low torques. But even here the noise is small compared to the
torques and does not pose any fine pointing problems. The closed-loop time history still asymptot-

¢ ically approaches the open-loop control torque.
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Figure 9 Open- and Closed-Loop Control Torque for 1st and 3rd Reaction Wheels

Figure 10 shows the time history of the attitude tracking error between the estimated states
and the open-loop states. The linearization used to find the controller feedback gains very accu-

® rately models the actual nonlinear feedback dynamics. The decay time constants and the damped
| frequencies match with the simulation very well. As predicted, the 1st axis has a higher damped
| frequency than the 2nd and 3rd axis.
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Figure 10 Closed-Loop Attitude Tracking Error
} g Figure 11 shows the time history of the angular velocity tracking error. Similar observations
} as with the attitude tracking error can be made. In both cases the initial state error is asymptoti-
| cally canceled. The error is effectively gone after about 20 seconds. The measurement noise lev-
i els are too low to be visible on these figures.
|
.
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Figure 11 Closed-Loop Body Angular Velocity Tracking Error

Figures 12 and 13 show the time histories of the estimator tracking error between the est-
mated states and the actual states. Again the predicted estimator responses matches very well with
the actual nonlinear response. The estimator dynamics are over-damped and errors decay an order
of magnitude faster than the controller dynamics. The errors are effectively gone after about 2 sec-

onds.
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Figure 12 Estimator Attitude Tracking Error
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Figure 13 Estimator Body Angular Velocity Tracking Error
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CONCLUSIONS

A nonlinear feedback control approach has been developed for iarge three-dimensional rota-
tional maneuvers. A unique coordinate choice and the use of Lyapmmov control design methods
are the key new ingredients blended to produce these results. To avaid exce ssive “ringing” of the
structure, the near-minimum-time and near-minimum-fuel referznce control torques were
smoothed with cubic splines. -

The feedforward/feedback control law presented is globally asyzptotically stable, even under
the influence of unmodeled, external torques with a known bound. The nonlinear estimator has
proven Lyapunov stzbility, and asymptotic stability in the absence of measurement noise. It is
also able to compensate for unmodeled external torques and rate gyro diases.

The actual closed-loop controller and estimator feedback dynacics matched very well with
the dynamics predictzd in the feedback gain selection sections, since only the attitude dynamics
had to be linearized. Becanse of the choice of attitude coordinates, th: modified Rodrigues param-
eters, this linearizatioa is valid for a range of attitude errors four times larger than if Euler angles
were used, and two times larger than if the classical Rodrigues paramzzers were used.

The maneuver demonstrated was able to track the open-loop trajeczory asymptotically and can-
cel any initial state or estimator errors.
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Analytical expressions are developed for computing eigenvector derivatives, specialized for the case of me-
chanical second-order dynamic systems. Both exact and approximate formulations are developed using a modal
expansion approach. The new exact formulations are found to be numerically accurate and to require significantly
less computing time than the corresponding generalized formulations. An improved approximate method is also
introduced for computing a truncated set of eigenvector derivatives for large structural systems. Numerical ex-
amples are included to evaluate the effectiveness of the approximate formulations, and they are found to be very

efficient in the cases studied.

L Introduction

OR many analysis and design problems in engineering system

analysis, including applications such as identification of dy-
namic systems,!? redesign of vibratory systems,3~¢ and design of
control systems by pole placement,’'? it is widely known in the
engineering literature that eigenvalue and eigenvector derivatives
with respect to design parameters are useful. .

In the past 20 years, several algebraic methods for computing
cigenvector derivatives have been studied by many researchers."*~%?
Nelson' has proposed an algebraic method for computing eigen-
vector derivatives. In this formulation, the eigenvector derivatives
can be computed using only the eigenvector of interest together
with some algebraic manipulation. Fox and Kapoor® present ex-
pressions for the rates of change of eigenvalues and eigenvectors
with respect to the design parameters of the structure. Recently,
Lim et al.'’ re-examined this problem and provided.a new formula-
tion for computing eigenvector derivatives and also established im-
portant relationships between left and right eigenvector derivatives.
Dailey's presents an algorithm for computing eigenvector deriva-
tives for real symmetric matrices in the case of repeated eigen-
values. Improved approximate methods for eigenvector derivatives,
using only an available subset of mode shapes, are presented!>-!?
for extremely large systems. All the above formulations are derived
for the general non-self-adjoint systems under the assumption that
matrices, eigenvalues, and eigenvectors are differentiable, except at
isolated points; most applications reported have been to mechanical
dynamic systems.

It is widely known that the dynamics of a large class of mechani-
cal systems can be represented most naturally by second-order sys-
tems of differential equations with several special properties. For
applying optimization or iterative design ideas to these systems, the
second-order differential equations are usually transformed into a
higher dimensioned first-order state space. Since the dimension of
aerospace structural dynamic systems is usually large, one often
encounters uncomfortably high computational burden to compute
eigenvector derivatives using any of the available formulations. Note
that eigenvector derivatives are central features for many algorithms
utilizing iterative. methods that modify the eigenstructure, and the
computation time per iteration is very important.
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There exist several properties of the system matrices describ-
ing mechanical systems that we exploit in the present paper to
significantly reduce the computational burden. In this paper efficient
formulas for computing eigenvector derivatives for a large family of
mechanical second-order systems are derived by eliminating some

unnecessary steps that are associated with transforming the differ- -

ential equations into a first-order state space and applying general-
purpose algorithms. Note that Fox and Kapoor's formulation'*
reflects structural characteristics instead of treating general eigen-
value problems. Therefore it can be easily applied for optimum
design of structures. However, damping characteristics are not con-
sidered in their formulation, and therefore it is basically a special
case of Lim et al. formulation.'® In other words, Fox and Kapoor’s
formulation' cannot be applied for both the control law design

. problem and the structural optimization problem, since, in the gen-

.eral setting, both of these problems include artificial or aerodynamic

damping. Since our formulation includes linear damping character-
istics, it can be utilized for solving a large class of optimization
problems concerned with mechanical second-order systems. A nu-
merical study is included to evaluate the effectiveness of the new
formulations. An improved method for approximating a truncated
set of eigenvector derivatives for large structural systems is also
presented and its utility is evaluated.

II. Eigenvalue Problems and Modal Derivatives
Consider a linear structure (modeled by a finite element or similar
discretization scheme) in which the configuration vector x is gov-
emed by the system of linear second-order differential equations

- ME() + Cx() + Kx(1) = Du(r) S O

where M is the n x n positive-definite symmetric mass matrix, C
is the n x n positive-semidefinite symmetric structural damping ma-
trix that can be diagonalized via modal coordinate transformation,
K is the n x n positive-semidefinite symmetric stiffness matrix, and
D is the n x m control influence matrix.

The closed-loop system can be written as

Mx(t)+Cx()+ Kx(t) =0 )

In a control design problem, the control law usually feeds back po-
sition and velocity information, and mass matrix M maintains its
constant, symmetric, positive-definite characteristics, but the damp-
ing and stiffness matrices C, K will be changed by feedback such
that the open-loop symmetry and definiteness characteristics are not

generally guaranteed. In a structural optimization problem, all ma-.

trices will most generally be perturbed, but M, C, K will maintain
their symmetry and definiteness propertics over all admissible de-
signs. In all cascs where we consider eigenvector derivatives with
respect to system parameters or control gains, the system matrices
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M, C, K will be assumed to be analytic functions of the system
design parameters or control gains. . .

Generalized Eigenvalue Problem

state-space form .

BRI

Bi=Az . @

or

where

o [ I R AR

Equation (4) represents the generalized eigenvalue problem for the
given system, and in this paper, only nondefective systems that have
a set of n linearly independent eigenvectors will be considered.
We observe that there is an infinity of possibilities implicit in the
above transformed equations; the matrix L is at this point unspeci-
fied. For selection of the L matrix, we must considerthe impactof the
‘selection of L upon numerical accuracy and efficiency in comput-

ing eigenvalues and eigenvectors; a symmetric nonsingular matrix

is widely used for convenience. In the structural dynamics literature,
the most popular choices for L are either the mass matrix M or the
stiffness matrix K. If the system includes rigid-body modes, then
the K matrix will be singular with the dimension of the null space
being the number of rigid-body degrees of freedom, and therefore,
the mass matrix M is a better candidate for those systems. Note that
for the L = M case, the B matrix is always a constant positive-
definite symmetric matrix for the general control design problem
(assuming the control law utilizes only position and velocity infor-
mation for feedback). On the other hand, for the L = K case, the B
matrix will be modified during the structural optimization process

and the symmetric property is generally lost due to feedback. Note -

that if B is ill-conditioned, then this can rule out the possibility of
computing any generalized eigenvalue accurately (Ref. 18, p. 395).
- Since the condition number of a matrix provides a useful measure
of numerical accuracy in matrix manipulations, it would be useful
to discuss the condition of the B matrix for the selected L matrix
briefly. Our experience with such studies indicates that the condi-
tion number of the B matrix for the L =.M choice is typically
smaller than that for the L = K case; the common existence of
many low-frequency eigenvalues is associated with a nearly rank-
deficient stiffness mateix. This practical point of view indicates that
constructing the B matrix using L = M will usually lead to better
conditioned computations and more accurate numerical results than
using L = K. For low-dimensioned problems with no rigid-body
degrees of freedom, the condition of all system matrices is typically
good, and therefore the stiffness matrix can be used in this situation
for L with excellent numerical efficiency and also without degrad-
ing the numerical accuracy. However, for large structural dynamics
problems with rigid-body modes or many low-frequency modes, we
recommend choosing L as the mass matrix, as a rule of thumb, for
numerical stability and accuracy.
The right and left eigenvalue problems associated with z = pet
solutions of Eq. (4) are, respectively,

\Bo, =AP;, i=1,2,..,2n
MBTY, =ATY;,  i=12,...,2n

where we adopt the conventional normalization of the biorthogo-
nality conditions for the eigenvectors as

é B =1 i=12,....2n
Y] B; =35

&)

©6)

where (-)T denotes the transpose of the given vector. It is possible
that the above normalization equation cannot be applied in some
circumstances, because it occasionally happens that @] B¢, may

.. Y. .. generate a zero value. However, the probability of encountering
In order to solve cigenvalue problems for mechanical second- -
order systems, Eq. (2) canbe transformed to the standard first-order -

this condition can be reduced to essentially zero for structural dy-
namics applications when special properties of admissible matrices

-are taken into account. Also, note that with normalization equa-

tion (6) the normalized eigenvectors are unique within a sign; —¢;
gives the same information as ¢;. It is apparent that a consistent and
unique eigenvector can be obtained by considering the sign of any
one nonzero element of each eigenvector. This property does not
generate any problem, if any formulation (for example, eigenvector
sensitivity) utilizing eigeavector information also reflects the sign
of the corresponding eigenvector, coasistently. We will discuss this
further in the subsequent section.

Eigenvalue and Eigeavector Derivatives

The usefulness of eigenvalue and eigeavector derivatives in de-
sign algorithms for engineering system analysis is well known.
Some specific applications include identification of dynamic sys-
tems, redesign of vibratory systems, design of control gains by
eigenstructure assignment, and sensor/actuator placement optimiza-
tion. In order to apply gradient-based optimization algorithms, itis
useful to compute analytical partial derivatives of eigenvalues and
eigenvectors with respect to the system design parameters. .

The differentiability of the eigenvectors has been addressed inthe
recent literature,3~Y7 and most of the papers are in the applications-
driven engineering optimization literature; some aspects of eigen-
vector differentiation in a general sense have been addressed in
the linear algebra literature!®-2; however, the circumstances un-
der which eigenvectors are not differentiable does not appear to
be adequately treated. Therefore, there may be need for collabo-
ration between engineering community and applied linear algebra .
researchers to address the problem of eigenvector differentiation,
with a special focus upon loss of differentiability (e.g., near the
repeated eigenvalues and other singular circumstances). Extensive
numerical experience with, for example, the formulations derived
by Lim et al.'® indicate that consistently normalized eigenvectors
using Eqs. (6) are differentiable except in isolated events. We avoid

.the known degenerate situations here, by ruling out the obvious pos- -

sibilities by enforcing definiteness assumptions on the mass matrix,
and we do not treat the case of repeatéd eigenvalues. .

For control design applications, matrix A is typically formed
from constant system matrices M, C, K and optimization-process-
variable gain matrices, and by taking matrix M for L, matrix Bisa
constant positive-definite symmetric matrix and the eigenvalues are
distinct by assumption. For the structural optimization applications,
matrices A and B consist of varying M, C, and K matrices, which
are assumed variable as functions of the design parameters such as
beam thickness, actuator locations, etc. For dealing with these en-
gineering problems, matrices A and B are assumed to be analytic
functions of the design parameters, and we made the heuristically
reasonable assumption, consistent with our experience, that eigen-
vectors are differentiable, but with special care taken in accounting
for the normalization conditions in-performing the differentiation
process. Readers may refer to Refs. 18-20 for discussions related
to the sensitivities of perturbation of eigenvectors for the general
eigenvalue problem. :

Differentiating Eqs. (5) and using Eqs. (6) (utilizing a modal
expansion approach) with respect to the design variable p, we can
obtain the results'®

i _rf3A_ 3B
—_— = ———A;—" i ' 8
y ¢,(ap ap)qs, ®
2n
% S ayb;  i=li...2n )
ap -
')'. 2
p
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where .. .

aijé‘;_l__—'tb}'(ﬁfltﬂ)‘i’: i#j
= —"[Zant¢g B+ BT)¢. + ¢; 4’:] i=]j

- L : an
1 3A 33 P
bu=m;¢z(ap )¢1 i#j
B . .
= —11’;’%;45.- - ai t=J

Note that the above expressions are valid only for the distinct eigen-
value case. Except for isolated events such as multiple eigenvalues
and associated root bifurcations, we assume the cigenvalues and
eigenvectors to be smooth differentiable functions of the design pa-
rameter. The case of repeated eigenvalues is considered in another
recent study.'

Modal Derivatives for the Second-Order Systems

The eigenstructure sensitivity formulas introduced in the previous
section are useful in control design and structure optimization prob-
lems. Since derivative-based iterative routines are often engaged
in these applications, it is important to calculate ‘the eigenvector
derivatives both accurately and efficiently. In this section, by uti-
lizing well-known properties for linear mechanical second-order
systems, efficient formulas for computing eigenvector derivatives
are established.

The corresponding right and left eigenvalue problems associ-
ated with exponential solutions (i.e., x = ae™) for the mechanical
second-order system [Eq. (2)] can bc written, respectively, as

(l.?'M +1C+ K)a,- =0 (
12)
(M +1,C+K) B, =0

where %;, &, and B; are ith eigenvalues and right and left modal
vectors, respectively and generally have complex values. The two
most popular choices for L in Eq. (3) will be considered in this
study.

Casel: L=M
The eigenvalue problem using the mass matrix for L canbe rewrit-

ten as
M 0 _ 0 M
li[o M]¢;—[_K _C]¢i

T
M 0 0o M
[o M] ¢,-=[_K -c] ¥

where ¢; € R* and v; € R are eigenvectors normalized using
Eq. (6) and can be partitioned as

¢‘gl) 1l,'gn)
¢i = { ¢!z) ’ 1!’1' = ¢82) (14)
By substituting Eq. (14) into Eq. (13) and comparing it with Eq. (12),

a relationship between the right eigenvectors of the first-order sys-
tem and the right eigenvectors of the second-order system can be

Obtained as
¢; = ‘ 15
i A.,'(!,' ( )

3

Also, using Egs. (13-15) in Eq. (6) yxclds the normalization equa-
tions (biorthogonality conditions)

(1+2})ofMa; =1
m’ @7 (16)
Y Moy + M Ma; = §;;

Considering a positive-definite symmetric M matrix in Eq. (6),
whenever a complex eigenvalue pair has purely imaginary parts
with an absolute value of unity (i.e., &; = i), the first equa-
tion yields zero, and obviously this equation cannot be applied for
normalization of the corresponding mode’s eigenvector. However,

- in control design or structure optimization applicatioas, we rarely

encounter this condition, since during the optimization procedure
our closed-loop eigenvalues are constrained to lie in the stable region
due to closed-loop stability constraints, and of course, this singular
condition is easy to check. One other condition exists where we
may have a pmblem with normalizing the eigenvector. Suppose that
«; = x + iy, where x and y are real vectors, both not zero; then

ol Mo; = 0if both x"Mx = yTMy and xT My = 0. In response
to questions raised during the review process, we have studied this
condition and have been unable to formally rule it out. We believe
it to be a singular condition rarely encountered but easily tested for.
Thus, the normahzauon is not universally valid because the normal-
ization equation ¢ B¢, =1 [Eq (6)] can fail under a few known
circumstances. From an engineering point of view, it is almost al-
ways useful (because the singular situations are rarely encountered
and furthermore may be easily tested for).

The eigenvalue derivatives for second-order systems can be ob-
tained by using Eqgs. (8) and (13-15):

B gr(2-22),,
= vi(%-22)s

(17)
_¢§2)T l 3M +A‘ 3C + 3[{ o
') ap
where
oM oM
0 puduital -
9A ap aB | dp 0 as)
p 3k _ac |’ p 0 aM
3p ap ap

Following a modal expansion approach, by substituting Eqgs. (13—
15)into Egs. (9-11), the eigenvector derivatives for the second-order
systems can be represented as :

e, I = .
(19)
where
(2)1' aM ac aK . .
. Ai— i
i = A—A¢ ('8p+ ap ap i#]
1 &
= =5 ) _au(l+Ak)of (M + Moy
bR
1 aM C
—=(1+13}) ——a i=j
s(t+2)af —a; ] (20)
= ( Xy — o
bl; lj_lid)' (A +A’l ap + 3[) &
T ')M ..
ey i
T r\dM
=_(¢§l) ¢(ﬂ) )——-a,— a;; i=j

Only complex-conjugate pairs of cigenvalues and cigenvectors oc-
cur for the casc of most interest (underdamped second-order systems
without rigid-body degrees of freedom), and the derivatives of the
corresponding complex-conjugate eigenvector pairs are also obvi-
ously complex-conjugate vector pairs. By making use of this prop-
crty, the computation time for calculating the eigenvector derivatives

244 for the complex-conjugate pairs can be immediately reduced by half.
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Casell: L=K .

The eigenvalue problem using the stiffness matrix as L can be

rewritten as

o al- _ B; '
$i= {l:al ]' Vi= {—Mﬁ:} - @n

In this case, the normalization equations (biorthogdnality condi-
tions) are obtained as . o
of (K +22M)o =1

r 22)
B (K — MidjM)cy = &;j

The procedure for deriving eigenvalue and eigenvector derivatives
for this case is similar to the previous case, and therefore only the
final results are summarized:

an .M . C 3K
— =B AN ATt | 23
ap A ( ' ap p @)

2n 2n
ag; ayP; .
—(*!-:Za;]qb]. -ai'-':Zb;j‘tle i =1,...,2!1
ap j=1 p j=1
(24)
where
_ A; T 23M E oK ) e, .
au_l‘__)‘iﬁj()‘i ap +l'ap+3p Q; '#]
1 2n
= —E-Za,-ka{[(l( + KT) + L0 (M + MT)] oy
i3l
1 T K 23M .. 25)
2a,-(ap +X ap)a, i=]
A rf.9M  _3C 3K .
ij = “a . Ai—
by i — A l(xap'l—‘ap ap i #J
aM 3K
= a7 227 72 =
i ( (} ap ap)a‘ a;; ! J

Note that the eigenvectors ¢; and ; of the first-order systems can
be simply represented in terms of the eigenvalue and eigenvectors
X, o, and B; of the second-order system, as seen in Eq. (21), in
the case. Due to this property, the eigenvector sensitivities can be
represented in a more compact form than the former case (L = M
case). Comparison of Egs. (20) and (25), especially expressions

for b;;, leads to the conclusion that, if an efficient algorithm for”

solving eigenvalue problems [Eqs. (22)] for the mechanical second-
order system is available, then Eq. (25) will be more effective, since
these equations do not need full information on the left eigenvectors,
including 9. It is also possible to utilize this property in Eq. (14)
for the L = M case; however, this approach involves a matrix
inverse, and therefore both the numerical accuracy and efficiency
will be degraded, especially for large mass matrices.

II. Approximation Methods in Computing

Modal Derivatives

Approximation Method for First-Order System
The formulas for eigenvector derivatives derived in the previous
section requires knowledge of all 2n eigenvectors. For very large
structural dynamic systems, it is well-known that only a lowest fre-
quency subset of N, modes (eigenvalues and eigenvectors) may be
computed accurately, where N, <« n, and in most practical appli-
cations, only tens of the lowest frequency modes participate signif-
icantly in a typical dynamic response of the system. It is natural to
conjecture that the contributions of very high frequency modesto the
sensitivity of the lower cigenvectors may also be neglected to some
degree of approximation. If we consider the problem that deriva-
tives of only N, modes are really nceded, then a method Qatbng all

eigenvectors may lead to inefficiency and a practical difficulty if all
of the eigenvectors cannot be accurately computed. For this case,
an approximate method for computing eigenvector derivatives has
been reported'S!7 by utilizing a modal truncation method, including .
only a subset of the system modes: :

3 . - _
-5;1 aud;+% (26)
Y - _
X o pue, + Wi : 27
% i + W @7
where
N 1-‘F N, ¢TF_
- jti -1 it
Z; = ¢;—ATFi + ?;
Sih=h ; A
i
N #7G; M. TG
Wi = A.LA.¢f-A-TGi+ ;t ¥
j=1 7t g j=1 "7
i#i
1 oB -, =
=3 (#7226 + ST mu 54,
. (g (28)
bi = "%(’;T%@ — Wl B¢, — P! Bz —

aA aB
=l —hiT )9
d (ap ap)¢

3A aB
T o7 = — A, —
Gi ¢.(3p : -ap)

The overbar denotes an approximate solution, and it is has been
found that the approximation is often very accurate for large struc-
tural systems where there exists a large frequency gap between the
1ast included mode (N,) and the next higher frequency mode. By
utilizing the biorthogonality conditions, we introduce a modifica-
tion of the above results, especially in the terms F; and G:.’. Our
modification follows.

Eigenvector Derivative Approximation Method
for Second-Order Systems :

‘We know from empirical experience that the above approximation
method is usually efficient for-computing lower mode eigenvector
derivatives. In this section, a more efficient method will be derived
especially for second-order systems by using results of the previous
sections. Again, we develop here approximation expressions only
for the special cases that the mass matrix or the stiffness matrix are
selected for the L matrix. In the approximation methods, case II
(using the stiffness matrix for-L matrix) is very efficient, thanks to
the elegantly simple expressions for the left eigenvector as seen in
Eq. (21), and therefore, this formulation requires much less arith-
metic, especially for computing the left eigenvector derivatives.

Casel: L= M
The exact eigenvector derivatives, Eq. (19), can be rewritten as

. 3. .
3 =a;¢; + 2. k7] =b;; +w; @9
dp o
where
L=y agi  wi=) by 30
i=t i=1
j#i i#i
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The eigenvalues are numbered according to increasing magnitude,
and we assume that only the lower N, modes’ derivatives are re-
quired fora suitably accurate approximation. Since we use thelower
frequency N, eigenvalues and cigenvectors, the higher mode eigen-
vectors (higher than the lowest N, modes) must be approximated.
Separatingz; and w; in Eqs. (30) into two parts, the first term includes
the lower N, mode eigenvectors that may be computed accurately
and the second term includes higher mode eigenvectors that will be

" approximated; this yields -
% =}:au¢1+ Z ai;d;
5;} J=Netl .
M . @31)
Wt=Zb.'j¢'j+ Z by
j.:! J=Ne+1
JF

Substituting Egs. (20) into Eq. (30) and using the property for the
class of problems with a large frequency gap,

kj—).;gli for j>Np
an approximation Z; can be written as
LA n GO E
= j i L
L = ¢j + Z ¢i
1:; i J=Net1
J
32)
Ne 1‘,,a)f E 2n ¢a)f F X 1J,‘,(z)” .
i ! j_ ! i 1
=) bt 2% - é;
=t Aj=X ; Aj ; Aj
where
aM __aC 3K
( ry +A » + ap)a. 33)

Since ¢(.2)TF,- is a scalar, the second summation on the right-hand
side of Elq (32) can be simplified. To do this, we consider the spectral
decomposition of the A matrix using Egs. (5-7):

A=VTAs™! 34)
or
2 T
Al =AW = e @35)
=t A
where
A= o M A = diag(®
=l_x —cl = diag(A;) 36
P =[¢--dul V= [ -- Y]

Equation (35) can be rewritten using Eqs. (14) and (15) as

T
a; PP ~K-'eM™t —K-!
L oM 0
@7
We obtain the following useful relationship from the above equation:

= 1 Olj".b?)r —-K-!
Z 3 r |~ 8
j=1" ).,-ajt,bi’ 0

Utilizing Eq. (38) in Eq. (32), we obtain the final approximation
form of Z; as

N T - N 7
] 7 F K- Y F
a=3. 7 5%| o F=d 5% 0

i=1

2n

T
$oL| e
A

. nTr T
j=1"4 lj&j‘l,b(i) A,-a,-z/:?’

#i 246

Now the modal representation of the eigenvector derivative can be
approximated as -

A%%:@@+zi - @)

where the approximation formula for @; can be obtained by substi-
tuting Eqs. (18) and (21) into the formula for @;; in Eq. (28),

o Af oM M
"“="§{(l+l")a‘ B S H |

+aof (M A,-M]i,} 41)

For the class of problems that we are dealing with, we have found
the above approximate solution is very efficient and is usually
sufficiently accurate to be used in a derivative-based design or opti-
mization process. It is straightforward but tedious to validate these
equations using finite differences or by retaining all of the eigen-
vectors in the corresponding “exact” formulas developed above
(provided, of course, that it is computationally feasible to solve
the full-order eigenvalue problem).

Similarly, the derivatives of the left eigenvectors can be computed
using the following modal approximation: -

B b+ 42)
ap
where
- MT M o0 4 M-T laMT_t_acT &
W = — — i— —_— ;
! 0o | F 0 -3p ap
M—TcTK—T]aKT Ne . Ny _
- — P+ ) k=) kb
j#i
1 T aM aC 3K
PR B C Ly PP
] {l]—li¢‘ ( l] ap +)~,ap -+ ap
TdM
-y —a;]aﬂb,- 43)
- 1 T oM aC 9K roM
Riy= =@ (A= + 2, =+ =— | =™ —Ya;1p;
! [Aid" ( " ap HCETRT i ap oi¥;

- M raM T oM
by = —w] =" ——a = M) —o
= [A,-M]a A re ek (i P
- 4 T
—aii—[".b,mM ¢§2)M]ZE

Note that we have made use of the following useful relations for
deriving the above equations:

52"_:1 KA [M“TCTK‘T]
e AR KT
$[4)-[]
(& -
mL¥ie] 0
Casell: L =K

Asin the previous section, the eigenvector approximation formula

(44)
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for this case is much simpler than in case I (L = M). Since the
derivation is quite similar, we only report the final results here:

o M K o o
z4=zh_llﬁ,ﬁ¢;—[ 0 ]a+}:ﬂ,5¢,

H
oM A K-T Ne r (45)
W;:El._l G}’apl:,—[ 0 ]G"l"ZG, o;P; v
I AR i=1 _

jri
where

. 1{ (3K MY\ | or K .
a"—_i[a"(ap gy )i TE am |
T KT T
T [M‘MT] zi}
- K M K
= BT o = A2 Gy — WY .
b;; Bi (ap A; ap)a, a; — W [l,-M]a

T -k
T %
+o e

and

oM aCc 3K
= (28 =
F; (A, % + "2 + ap)a

T
M ac 9K
= (= A=t — i
Gi (A,aper ap+ap)ﬁ.

We use the following useful relations for deriving the above

equations:
5L
=t l,a;ﬁ}' 0
L[]
= —l]ﬂia}- - 0

IV. Numerical Example

To demonstrate the efficiency and accuracy of the several eigen-
vector derivative formulas developed in the previous sections, we
consider a moderately dimensioned second-order system. The exact
[Egs. (8-11)] and approximate [Eqs. (26-28)] methods along with
the new formulations developed for second-order systems are com-
pared. Eigenvector derivatives in this paper were computed on an
IBM PC-486DX (33 MHz) using 386 MATLAB®.

To provide a basis for comparison, we introduce an error measure
based on the biorthogonality conditions of Egs. (6). The partial
derivatives of Eq. (6) forthe i = j case with respectto the parameter
are as follows:

N
'5;(45: Bé;) =0,

@6)

%(4:.-’3@) =0 @7

It is obvious that if computed eigenvector derivatives are accurate,
then as a necessary condition, the above equation must be satisfied.
Therefore, an error measure can be defined as a norm of the differ-
ences from zero when computed derivatives are substituted into the
above equations. Although this is only a necessary condition test on
the validity of the eigenvectors, we have found that it is very useful
to identify poorly approximated eigenvector derivatives and can be
routinely computed more efficiently than forming a large table of
finite difference approximations and comparing them to the corre-
sponding analytic derivatives. We mention, however, that we have
done extensive finite difference validations of all of the above cigen-
vector derivative formulas with typical agreement being fourtonine
digits, depending upon the smallness of the finite differen’c’eﬁ ‘S.,leps,

Tablel Configuration parameters of flexible beam

Parameter Value Units
Mass deasity 00271875 .. - . slgt
- Young’s modulus 0.1584 x 10'¢ . LT
Beam leagth 40 . . ft
Momeat of inertia 47095 x 1072 B (o

and of course, this agreement between finite derivative approxi-
mation and analytical formulas is problem dependent. The error
measure of Eqgs. (47) is convenient; it provides an easy-to-compute
measure without requiring a problem-dependent artistic search for
“how small” to make a finite difference parameter increment (8p).
Generally, the error values computed from Eqgs. (47) are complex
numbers, and we define an cigenvector derivative error measure by
simply using the absolute value of Eqs. (47), i.e.,

T
8(%) = “%‘B@ +¢-T?—B'¢i + d’:Bgﬁ“

ap ' ap ap

43)
a2l 3B, | 47pd%i
g(ap)=“ » B; +%; apd’i‘*“d’iBap

We mention the obvious fact that comparing the calculated eigenvec-
tor derivatives with computed results using finite difference approx-
imation requires care on two counts. First, since computed results
using a finite difference approximation .are not exact derivatives,
it usually is necessary to explore the size of the appropriate pa-
rameter increments, and if the finite difference approximation of
the derivative is found to be stable to at least four significant fig-
ures (rule of thumb) over an order-of-magnitude variation in the
size of the parameter increment, then the derivatives are usually
found to be sufficiently accurate for derivative-based optimization
processes. However, ‘a patient pursuit of digits in the finite differ-
ence tuning can usually result in much higher precision agreement
with the analytical partials. Avoiding this finite difference artwork
is of course a primary motivation to have analytical partial deriva-
tives and analytical necessary condition tests such as Eq. (48) to
test for arithmetic ecrors. Second, and most importantly, the nor-
malization conditions (in the biorthogonality conditions) that were

- enforced in deriving the eigenvector derivative formulas must be -

enforced on the nominal and perturbed eigenvectors used in the fi-
nite difference computations. We have concluded that the above
error norm represents an attractive necessary condition measure for
checking computed eigenvector derivatives and is in many ways
more attractive than comparisons to results using the finite difference
method. Therefore, in this study, the error measure introduced in
Eq. (48) will be used for checking accuracy of computed eigenvector
sensitivities. :

Consider a transverse vibration of a uniform cantilever beam. A
finite element method?®?* is adopted for modeling, and structural
damping (assumed damping ratio of 0.001) is included. The geo-
metric and material parameters of the beam are listed in Table 1.
To demonstrate the effectiveness of the new methods for at least
moderately high dimensioned problems, 20 elements are consid-
ered, and therefore, using the usual cubic spline beam elements (the
system configuration coordinates are the deflection and slope at the
right end of each element), the dimension of the mass, damping,
and stiffness matrices is 40 x 40. In order to evaluate the eigen-
value/eigenvector derivatives, all elements of the mass, damping,
and stiffness matrices are perturbed about 0.1% arbitrarily for this
special example, and the errors of the cigenvector sensitivitics due
to the perturbation are given below. Note that eigenvector deriva-
tives are calculated for the normalized eigenvectors, and for this
special example the norm of the eigenvector is of order 1 for all
modes, and the norms of the cigenvector’s derivatives are of order 1
for the low-{requency modes and of order 2 for the high-frequency
modes. Therefore, it is evident that a computed result accurate to
better than seven digits in the worst case was obtained using the
three alternative formulas developed above for exact eigenveetor
derivatives.
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Table 2 Errors of right eigenvector derivatives

. Second-order method
Mode First-order method Method I* - Method I
1 0.1655 x 10~ 56456x10~° 26324 x 10~6
2 0.0083 x 10~13 01870x10~%  0.4660 x 10~5
3 0.0003 x 10-13 12028 x10~°  0.1214 x 10~6
4 0.0001 x 1013 04148 x 10~° 0.0227 x 10~6
40 0.4805 x 10~18 19319x10~%  3.6814x 10V
Times, s 879.68 31027 301.04
Percent 100 35.27 3422
WseL=M. DPUseL=K.
Table 3 Errors of left eigenvector derivatives
Second-order method
Mode First-order method Method I* Method I1®
1 1.4541 x 10~ 13319 x 10~? 1.3845 x 10~9
2 0.0946 x 10~ 0.1707 x 10~? 0.0018 x 10~?
3 0.1575 x 10-? 02062 x 10~? 0.0023 x 10~
4 0.1076 x 10~ 0.0512 x 10~° 0.0165 x 10~
40 35224 x 10~ 3.4451 x 109 3.2120 x 10~°
Time, s 1187.11 43348 39343
Percent 100 36.52 33.14
PseL=M. OUseL=K.

The error of the right and left eigenvector derivatives using the

905
" Table 4 Errors of right eigeavector derivatives:
’ approximation methods )
Second-order method
Mode First-ordermethod .  Method I* “Method I
1 0.0831 x 10~ 53276 x 10~ 1.3592x 10~1
2 0.0018 x 10~ 0.4207 x 10~° 0.0122 x 10~1!
3 0.0017 x 10~14 06170 x 10~° 0.0022 x 10~
4 0.0011 x 10~ 0.1600x102  0.0010 x 10~1!
5 0.0002 x 10714 0.0402 x 10~° 0.0004 x 10~12
Time, s 14.61 2.69 2.80
Percent 100 1841 19.16
qseL=M. DPUseL=K.
Table 5 Errors of left eigenvector derivatives:
approximation methods
Second-order method

Mode First-order method Method I* Method I1P
1 0.0007 x 1014 12653 x 10~ 3.0959 x 10~13
2 0.0111 x 10~ 0.0585 x 10~ 0.0160 x 1013
3 0.0014 x 10~14 0.1310 x 10~ 0.0015 x 10~13
4 0.0004 x 10-14 0.0440 x 10~ 0.0004 x 10~13
5 0.0002 x 10~ 0.0123 x 1077 0.0001 x 10~¥
Time, s 27.13 18.07 8.84
Percent 100 66.61 3258
WseL=M. DUseL=K.

exact formulas are summarized in Tables 2 and 3, respectively, and
the error measures of the first four lower modes and the highest
(40th) mode are reported. For the first-order method, we use the mass
matrix M for the L matrix and apply the exact formula Egs. (8-11)
with Eqgs. (3) and (4). Note that for computing the left eigenvector
derivatives, we use partial computations (a;;) from the calculation
of right eigenvector derivatives, and therefore the errors (of the right
eigenvector derivatives) propagate into the computation of the left
eigenvector derivatives. It is evident that some of the information
needed on the left eigenvector derivative is already known from the
right, and this valuable information can be utilized for computing
left eigenvector sensitivities. However, left eigenvector sensitivities
cannot be computed without former computations of a;;. Therefore
computing time for left eigenvector sensitivities includes calculating
all a;; coefficients [for computing a;;, we need g;;(i # j)], and
naturally more computing time is needed for computing the left
eigenvector derivatives.

There are several formulas for computing the eigenvector sensi-
tivities discussed in this paper. We will refer the exact and approx-
imate methods to the existing exact and approximate formulas for
computing eigenvector sensitivities, respectively. For the presented
methods for the second-order systems, whether the exact formula
or the approximate formula is used, method I refers to the case that
mass matrix M is used for matrix L, and method Il refers to the case
that stiffness matrix M is used for matrix L. As shownin Table 2, the
accuracy of method I is lower than that of the first-order method, but
both are acceptable. The errors of right eigenvector sensitivities us-
ing method Il are not uniform and are alittle larger than for method I.
The computation time for the second-order method is three times
less than the computation time required for the exact formula for the
first-order system (Tables 2 and 3). In this study, in order to com-
pute eigenvalues and eigenvectors for this second-order system, we
use an eigenproblem solver for the first-order system, and the B ma-
trix in Eq. (4) is moderately ill-conditioned {the condition number
is O(107)]. For method II, the poor conditioning of the B matrix
results from the fact that not only the dimension of B matrix is large
(i.e., 80), but also the order of magnitude of mass matrix elements
is significantly different from that of stiffness matrix clements. For
this system, the computed eigenvectors also include errors; this is
cvident by nonzero residuals if one substitutes the computed eigen-
vectors into the biorthogonality conditions. Especially for large
systems, errors may be propagated from incorrect cigenvector com-
putations into the analytically derived formulas for the eigenvector

derivatives. Thus the validity of the derivative approximation rests
not only upon, for example, including all of the important modes in
a modal truncation, but also upon the manner in which arithmetic
errors in the original eigensolution propagate through the particu-
lar derivative equation calculations. From these observations, and
other empirical experience, we recommend that method IT should
be used only for relatively low dimensioned systems, and method I
is recommended for high-dimensioned applications.

For the eigenvector derivative approximation methods, only the
first five (lowest frequency) modes (N, = 10) are computed.
Tables 4 and 5 summarize the results using our (improved) approx-
imation methods. The errors of methods I and II are larger than
those for (improved) approximation method for the first-order sys-
tem but are judged acceptable for most applications. As shown in
Tables 4 and 5, when we use approximation method I, the compu-
tation time for computing the right eigenvector derivatives is five
times faster than the approximation method for the first-order sys-
tem, and for computing the left eigenvector derivatives, it is approx-
imately twice as fast. Approximation method I1 is found to be much
faster than method I, and the computation errors are also smaller.
Another interesting phenomenon is that the results using the ap-
proximation methods (Tables 4 and 5) for the lower modes tumn
out to be more accurate than those of the exact (in theory) meth-
ods (Tables 2 and 3). We may explain-this phenomenon by noting
that numerically inexact computed eigerivectors associated with the
higher frequencies are included in evaluating the exact formulas,
but not in the approximate solution, and another contributing factor
is that the approximate method is much less intense computation-
ally, and therefore the approximate formulas are less susceptible
to the accumulation of arithmetic errors. These results provide a
basis for optimism as regards the practical utility of the new ap-
proximate eigenvector derivative formulas presented herein, but as
with any modal truncation method, the issue of which modes to
retain is problem dependent and generally impossible to resolve
universally.

V. Conclusions

This paper dedves some new exact and approximate formulas
for computing eigenvector derivatives for second-order mechanical
systems. In order Lo demonstrate the effectiveness and accuracies
of the new formulas, a numerical study using a moderately high
dimensioned flexible structure is presented. The uscfulness of the
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new methods has been verified by comparing computation time to

the corresponding computation time for the exact formulas for the ’

first-order system, and the accuracy of the new methods has also
been found to be excellent in the current example. These formu-
lations are suitable for incorporation into iterative computer-aided
design optimization algorithms and should find wide application.
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Abstract

This modest note presents the necessary condi-
tions related to the optimal control of natural sec-
ond order systems. The development includes sys-
tems subject to holonomic constraints. For natu-
ral systems, the second order form of the governing
differential equations are augemented to the perfor-
mance index, and as a consequence, the resulting
adjoint system defining the necessary conditions of
optimality is also second order in form. For natural
systems subject to holonomic constraints, the sec-
ond order differential equations of motion and the
algebraic equations of constraint are augemented to
the performance index. Following the usual meth-
ods, we find that, like the original dynamical system,
the resulting adjoint system is also holonomically
constrained. We propose an augmented-Lagrangian
method to numerically solve the coupled set of
differential-algebraic equations within the solution
of the two-point boundary value problem.

Introduction

A significant class of problems in analytical me-
chanics fall under the heading of natural systems.!2
These include robotic and satellite systems wherein
the joint angles between substructures may undergo
large rotations. Many times, the governing differen-
tial equations of these systems are subject to holo-
nomic constraints. That is, the equations of mo-
tion are formulated such that the generalized co-
ordinates are not independent, but rather they are
related thru algebraic equations.

Traditionally, vis-a-vis optimal control formula-
tions, natural systems are treated no differently: the
equations of motion are cast into first order form,

*Graduate Student, Department of Aerospace Engineering,
Student Member AIAA.

tGeorge J. Eppright Chair Professor, Department of
Aerospace Engineering, Fellow AIAA.
Copyright (©)1995 by the American Institute of Aeronautics and
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and following the usual variational calculus tech-
niques, one arrives at the adjoint system of first or-
der differential equations which must be satisfied to
meet the necessary conditions of optimality.?

When the dynamical system is subject to holo-
nomic constraints, the optimal control formulation
often begins with manipulating the governing equa-
tions by one of three methods before the usual pro-
cedures for arriving at the necessary conditions for
optimal control are applied. In the first method, the
holonomic constraints are used to eliminate redun-
dant coordinates algebraically and the equations of
motion are formulated using & minimal coordinate
description of the system. Because these formula-
tions rely upon a minimal set of coordinates, the
resulting system is no longer explicitly constrained.
In a second method, locally equivalent to the first,
the generalized coordinates undergo a judicious non-
linear coordinate transformation. In these new co-
ordinates, the constraints are trivially satisfied leav-
ing a subset of differential equations which are not
subjected to constraint forces.* A third approach
begins by differentiating the holonomic constraint
equations; the result is arranged as a linear opera-
tion on the generalized coordinate acceleration vec-
tor. This allows the elimination of the Lagrange
multipliers appearing in the differential equations of
motion in favor of nonlinear functions of the gener-
alized coordinates, velocities and controls. This ap-
proach is known as either a range space or null space
formulation depending on the particular method of
elimination used.®

All three of the above methods result in a “con-
straint free” form of the system differential equa-
tions of motion wherein the generalized coordinates
may be considered independent. As mentioned, sub-
sequent to these manipulations, the usual proce-
dures for deriving expressions for the optimal con-
trol may be applied. For all but trivial examples,
however, these methods lead to almost intractable
governing equations.

Below, we formulate the optimal control prob-
lem for natural systems in second order form. As
a consequence, because the resulting coupled differ-
ential equations are in second order form, in solving




them we may use one of the many implicit integra-
tion schemes available.®” These schemes were espe-
cially designed for mechanical systems. For systems
subject to holonomic constraints, we pursue a differ-
ent avenue towards the optimal control than those
methods outlined above. Our approach is driven by
the desire to avoid nonlinear transformations of the
generalized coordinates or the elimination of the La-
grange multipliers from the differential equations of
motion.

Governing Equations

Natural systems are identified as those for which
the kinetic energy is expressed as a quadratic func-
tion of the generalized velocities. Specifically,

T = tmij(q) 6 ds-

Here, m;; is the symmetric, positive definite mass
matrix and is seen to be a function of the generalized
coordinates g—we adopt the convention that repeti-
tion of an index in a term will denote a summation
with respect to that index over its range. Using
Lagrangian mechanics to develop the equations of
motion begins with forming the system Lagrangian
as the difference between the kinetic and potential
energies,

‘C(qr é) = T(q) q) - V(Q)x

where the potential energy V is generally a nonlin-
ear function of the generalized coordinates. Upon
identifying any generalized forces which do noncon-
servative work, the form of Lagrange’s equations be-

come d (oL oL
z(aq*,;) ~ o = % ()

The Q. are nonconservative generalized forces act-
ing on the system and they are often generated by
a linear operation on a vector of control inputs via
Qi = Bim tm. The matrix B, is often called the
control influence matrix.

Performing the implied differentiation above, the
differential equations of motion are

. .. ay
my;(q) §i + Meij(g) ¢i 45 + F o Bim tm, (2)
where the third order temsor Ilx;; is commonly

referred to as the Christoffel operator of the first
kind and is defined as

_ def 1 ,0m; Bmk,- Bm;j
Teij = 35 ( 3g; ' 8¢  Om )

It is convenient to denote 7m;j(g) as elements of
the inverse of the mass matrix (i.e. murmi; =
6;;), which allows us to write the governing set of
equations as

G + hi(g,9) + 9i(q) = bim(g) tm, (3)

where aet
hi(g,9) = uir(q) Mraj(q) 41 451

of a8y
gi(a) & mur(q) 5o 2nd
ax

bim(a) = ik (g) Bim.

As mentioned earlier, in many system represen-
tations the generalized coordinates g are not inde-
pendent, but rather they are related thru a set of
nonlinear holonomic constraint equations given by

Qoo(‘I) =0.

Now, because the coordinates are not independent,
one must account for the constraint forces which
restrict the time/space evolution of the system.
This is done by representing the constraint forces
by 5
Yo

aqk AO,

where ), are elements of a time varying vector
of Lagrange multipliers which, when determined
correctly, enforce the holonomic constraints of the
system. Physically, the normal component of the

"constraint force is proportional to the gradient of

the constraint function. These constraint forces are
added to the right-hand side of eq.(1), and so, in the
present context the constrained dynamical system is
described by the set of equations

d (oL oL 0,
$(6) s merae W

subject to  p,(g) =0, ()
or, performing the implied differentiation,
g + hi(g,4) + 9i(9) = ~ _
bim(Q) Um + dio(Q) Ao (6)
subject to  p,(g) =0, (7)

where

8,

9k

We emphasize that this set of differential-algebraic
equations given by eqs.(4) and (5) must be solved

dio(q) & mir(q)
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simultaneously for the unknown vectors g(t) and
AD).

We next pose the optimal control statement for
the natural systems described above.

Necessary Conditions for Optimal Control

The necessary conditions for optimal control are
almost universally derived with the equations of mo-
tion in first order form. Below, we use the tech-
niques of variational calculus to obtain the necessary
conditions for the natural second order systems in-
troduced in the previous section. We begin with the
system governed by eq.(3) and then focus on the
holonomically constrained system given by eqs.(6)
and (7).

The problem statement is the minimization of a
given performance index subject to the dynamical
equation constraints. We consider a performance in-
dex which contains terms that are quadratic in the
generalized positions, generalized velocities, con-
trols and control rates: including the control rate
term allows one to specify the value of control at
the beginning and end of the manuever. Appending
the dynamical equations to the performance index
results in

ty
‘7=./: [3Q%aei+3Qdd;
0
+ %le u Um + %‘le U U + V5 ( ~;
— hi(g,4) — gi(q) + bim(q) um ) ] dt,

where v; is a time-varying vector of Lagrange mul-
tipliers, while ij, Q?j» Rim and Py, represent el-
ements of the weight matrices which are defined in
the usual way. Limiting ourselves to smooth, un-
bounded controls while taking the first variation

yields
C . dh; bt I
63=[ngQi+vj—vi5‘T‘]5qJ‘ —v; 6¢;
q; 0

ty

0

+ Pim W Sum

ty
+ [ (Q%a—-@d
(1] to
. d dh; 8h; v ag.'

—vj-l-(-iz(vi‘a—q.;)—vigq;— .‘*a?j'

Bim ) -
6‘ Um )8g; + ( —Pim s + Rim w

a;
+ ¥; bim ) 6um + (-—Gi — hi(g,§) — 9i(q)

+ bim(g) um ) 6vi]dt =0, (8)
where we have performed an integration by parts to

eliminate §4;, §¢;, and §iy, from the integrand. In-
vestigating eq.(8), we first comment that the second

+ v;

order state equations must be satisfied. Next, be-
cause the variations of ¢; are independent and arbi-
trary throughout the integration interval while their
respective multipliers are continuous, these multi-
pliers must be indentically zero.® Similar reasoning
applies in regarding the variations of u,. These ar-
guments provide us with the second order costate
(or adjoint) differential equations, and a differential
optimality condition.

Original system:
G + hi(g,4) +9i(q) = bu(g) wi . (9)

Adjoint system:

. d, Ok éh; 0y
B = g aq',-)+ w 3g; | dg;
abim v s
~ b Um ) = Q% ¢ — QJ; i (10)
Optimality condition:
Pim it + Rim Ut = v; bim (11)

All that is remaining is the satisfaction of the
boundary terms (transversality conditions) which
require

.. 8h; t . ty
[Q%di+9;—vige16g| =0 wdh =0
25 0 0
ty
and P 2 éum| =0. (122 —¢)
)

In considering natural systems subject to holo-
nomic constraints, we closely follow the develop-
ments above. We begin by appending eqs.(6) and
(7) to the performance index which results in

t;
J=/t. [3Q%qiq; + 5 QY i ds
[/} .
+ L Rim vt + 3 Pim 4 Um

+ v (—Gi — hi(g,9) — 9i(g) + bim(q) um
+ dio(Q) Ao) + Yo ‘po(Q) ] dt.

Here v; and 4, are time-varying vectors of Lagrange
multipliers. Taking the first variation of this equa-
tion while performing an integration by parts to
eliminate 64;, 6g;, and §i, from the integrand leads

to

ty ty
- v; 8¢;

to

.. oh;
0=[Q}; ¢+ — v FYN }6q;
q;

to
ty
+ Pi U 6Um

0

753




ty
+ft [(Q% 0 — QY di — o
Oh; Oh; dg;

IR L

ab adio a‘p
+ v a Um + ¥4 69j — Ao+ 0)591
+ v dto(Q) 8o ] dt

ty
+/ [(le'&l+leul+vibim)5umdt-
¢

Note that in the above statement we have al-
ready imposed the requirement that the differential-
algebraic equations which govern the original dy-
namical system must be satisfied throughout the in-
tegration interval. Now, arguments similar to those
mentioned in the previous discussion lead us to a
set of second order costate (adjoint) differential-
algebraic equations and a differential optimality
condition.

Original system:

Gi + hi(g,4) +gi(q) =
bim (Q) Um + dio(Q) Ao (138-)
subject to  ¢,(gq) = 0. (13b)
Adjoint system: ‘
.- d, Oh; 8h;  0Og:
vj "E(”t"".—)"'vs( 3q; +‘a‘q‘;
3bim 3dzo
- Uy — — Ao
9gj Bg; )
. , 9p,
= Qf] g — QaJ g+ an 70 (148')
subject to v;dio(g) = 0. (14b)
Optimality condition:
Pim G + Rim w1 = v bim (15)

The corresponding boundary terms are identical
to those given earlier except that now, like the
differential equations, these boundary conditions
must be satisfied subject to eqs.(13b) and (14b).

Numerical Solution of the TPBVP

The set of equations defining the necessary con-

ditions for optimal control represent a two-point
boundary value problem. In most nonlinear prob-
lems of practical interest, this system of equations

must be solved numerically. While there are many
different numerical methods which may be applied®
(the method of particular solutions, polynomial ap-
proximation methods, quasi-linearization methods,
etc.), we use the shooting method in the examples
that follow. But rather than focus on the numeri-
cal technique used to attack the two-point bound-
ary value problem, we look to the necessary condi-
tions in their second order form to see if any advan-
tages are offered within the solution of the two-point
boundary value problem.

Beginning with a natural system whose motion
is governed by eq.(3), we recall that the necessary
conditions for optimal control are given by eqs.(9)
thru (11) and the boundary conditions eq.(12). One
possible advantage to the second order develop-
ment may be that because the differential equations
are in second order form, one may take advantage
of some particular implicit integration schemes.®’
These schemes were especially designed with natu-
ral systems in mind.

Concerning a natural system subject to holo-
nomic constraints, we recall that the necessary con-
ditions for optimal control are given by egs.(13)
thru (15) and the boundary conditions—recall that
the equations came about by electing not to per-
form a nonlinear transformation of the generalized
coordinates or eliminate the Lagrange multipliers
which enforce the constraint forces. These equa-
tions are indentified as differential-algebraic equa-
tions and their solution requires careful attention.
While numerical solutions strategies for differential-
algebraic equations have been the focus of research
for some years, a penalty solution method has re-
cently shown considerable promise.

Historically, the primary use of augmented La-
grangian methods has been in obtaining solutions
to time independent problems that are subject -
to constraints.’® Recently however, these meth-
ods have been extended to address the differential-
algebraic equations which arise in multi-body dy-
namic formulations.}!**? Moreover, analysis for very
general nonlinear dynamical systems has been con-
ducted which not only proves convergence, but es-
tablishes bounds on the rate of convergence of the
method.!3

The general strategy of augmented Lagrangian
methods is iterative and involves approximating the
constraint forces and the Lagrange multipliers which
enforce them. The approximate multipliers are up-
dated based upon a measure of constraint violation.
When applied to constrained dynamical systems, -
the solution process can be viewed as quasi-static

254



in nature. Specifically, an iteration process is trig-
gered at each time step wherein the postions and
velocities are treated as constant while the acceler-
ations are considered a static quantity. As applied
to our coupled state/adjoint differential-algebraic
equations our strategy involves investigating the dy-
namics of the state and adjoint systems separately:

" the key lies in looking at the dynamics of the orig-

inal system first. The iteration process is outlined
below and closely parallels that given in Ref. (13).
Before we continue, we remark that with suit-
able defintions, we may express the state/adjoint
differential-algebraic equation as

q‘i =" (9: 4, u) +dio Ao
subject to o(q) =0,

w .. 8
w=m@@mmwM+£?n
4
subject to  vjdjo(g) =0.

Now then, the iterative scheme triggered at each
time step is based upon the following approximation
to the original system:

6:‘ =7 (Q: 4, ‘U) +dio /\f,'

1, 190 :n 2 800,
edw[ dgj 4t 8q,-)q’
+ 2¢we, + w2<p.,], (16)
=3
1 a‘po en d a‘Po s,
+ 20w, + w?pol, (17)

with A3 =0.

In the above, §* and A} represent current approxi-
mations to the true accelerations and Lagrange mul-
tipliers respectively, while the bracketed term rep-
resents a measure of constraint violation. Further,
n is the iteration number, € > 0 is a small penalty
factor, and (,w > 0 represent a damping factor and
frequency associated with the constraint violation.
The iterative procedure at time t begins by solv-
ing eq.(16) for the approximate acceleration ¢,
This is then substituted into eq.(17) where an up-
date to the approximate Lagrange multipliers An+l
is obtained. This is then substituted back into
eq.(16) and the iterative process continues until con-
vergence is recognized. For the sake of brevity, we
only mention here that, convergence of the method
may be shown (§/* — gj and A7 — X,). That is, the

approximate accelerations and Lagrange multipliers
approach the true values in the limit. The proof
relies on the fact that the mass matrix is positive
definite, € > 0, and by requiring that the constraint
jacobian maintain full rank.

Now then, having converged to the true acceler-
ations and Lagrange multipliers of the original sys-
tem, we next introduce an approximation to the ad-
joint system as was done for the original system.

i .. 0
viﬂ = pi (qr%vtv:A) + _3227:
qi
1 aﬁoo e q
€ 3q,~ [d"ovj
+ 2Cwibo + o)y (18)
=1
1 w
T e [d.f"’";;t
+ ZCUNI.'o + wz"l’o]a (19)
with 'yg =0.

Here, 9 and 4} represent current approximations
to the true accelerations and Lagrange multipliers of
the adjoint system, respectively, while the bracketed
term represents a measure of constraint violation.
Again, n is the iteration number, € > 0 is a small
penalty factor, and {,w > O represent 2 damping
factor and frequency associated with the constraint
violation.

The iterative procedure at time t is performed
on egs.(18) and (19) just like it was for the origi-
nal system. This iterative scheme is also convergent
(3} — ¥ and 75 — 4o): that is the approximate
adjoint accelerations and associated Lagrange mul-
tipliers approach their true values in the limit.

Thus, careful application of the augmented La-
grangian method to the numerical solution of the
coupled differential-algebraic equations, which de-
fine the necessary conditions to optimal control, is
seen to be a suitable and attractive solution process.

Illustrative Examples

We now focus on illustrative examples. The pre-
vious section outlined mumerical techniques which
may be employed within the solution process of
a chosen numerical method to solving the two-
point boundary value problem. For all the exam-
ples below, we use a shooting method of solution.
The results are obtained through using the codes
DNEQNF available in the IMSL* library.
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The first example is a two-link rigid manipulator
shown in Fig. 1. The system properties are listed
in Table 1. In the simulation, we slew both links
through angles of 90° in a prescribed time. We
enforce that the controls begin and end at zero.
Results are shown Figs. 1(a-c).

The second example, shown in Figure 2 repre-
sents a free floating satellite. Table 2 contains the
system properties. A similar system was presented
in Ref. 15. The system begins in a folded up fash-
ion and the optimal control is found to rotate the
main body through 90° while extending the arms
in the outreached postion of 90° in a prescribed fi-
nal time. In Ref. 15, the relative angles between
the bodies are chosen as the generalized coordinates.
This description results in the main body angle o
being an ignorable coordinate (a statement of the
conservation of angular momentum for the system).
The equations of motion are put into a normal form
via a feedback transformation, and pseudo control
functions are sought rather than the acuator con-
trol torques. Here, we select the absolute angles,
(as measured from a reference) as the generalized
coordinates. In this description, o is no longer an
ignorable coordinate. We do use a simple stabiliza-
tion procedure"6 to acurately enforce the rigorous
integral of motion (angular momentum) while nu-
merically integrating the system equations. Results
are shown in Figs. 2(2-d).

The last example represents a holonomically con-
strained system. A two-link rigid manipulator sys-
tem is constrained to remain in contact with a sur-
face (cf. Fig. 3). The constraint function for this
example is

¢ =1y cosby +1z cosf— L =0.

The system properties are listed in Table 3. The
end effector is moved a distance along the surface
in a prescribed time. The augmented Lagrangian
method presented earlier is used to enforce the
constraint and the results are shown in Figs. 3(a-d).

Conclusions

We have investigated the necessary conditions re-
lated to the optimal control of natural second order
systems. These systems represent a significant class
of problems in analytical mechanics; most notably,
robotic and satellite systems wherein the joint an-
gles between substructures may undergo large rota-
tions. We have presented a new approach to op-
timal control of natural systems subject to holo-
nomic constraints. In this approach, the differential-
algebraic equations are augmented to a performance
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index and variational calculus techniques are used
to obtain the necessary conditions. Like the origi-
nal dynamical system, the resulting adjoint system
is also constrained. A careful application of an aug-
mented Lagrangian method is proposed to enforce
the constraints relationships of the original and ad-
joint systems during the numerical solution of the
two-point boundary value problem. Also, the dif-
ferential equations, as presented, are readily suit-
able to numerical integration by implicit integration
schemes recently developed.
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Chapter 3

Stability and Control of
Nonlinear Mechanical Systems

John L. Junkins
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and
Youdan Kim

Seoul National University
Seoul, Korea 151-742

Abstract—We present some elegant concepts from stability theory, and consider
their applicability to the problem of designing control laws for many degree of
freedom nonlinear dynamical systems. While the spirit of our presentation is
classical, we include some novel stability results and.methodology for designing

globally stable control laws for nonlinear dynamical systems. The Lyapunov
" approach is attractive because it provides the most broadly applicable approach
to stability analysis and guaranteed stable controller design for nonlinear, time
varying, and distributed parameter systems. Especially significant is the fact that
the Lyapunov approach leads to a unified stability and control perspective for both
linear and nonlinear systems, as well as systems described by ordinary, partial, and
hybrid differential equations. The first half of this chapter is an efficient summary
of the main features of Lyapunov stability theory; however, a few examples are
considered to help illustrate this material. The second half of the chapter is
addressed to studies wherein we formulate stabilizing feedback control laws for -
multibody distributed parameter systems undergoing large, generally nonlinear
motions. Analytical, numerical, and experimental results are discussed.
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Sec. 3.1. Basic Definitions 109

3.1 BASIC DEFINITIONS

Consider a continuous, finite-dimensional dynamical system which can be described
by a first-order nonlinear vector differential equation of the form

x = £(x,t), x€R" (3.1)

where x(t) is the state vector at time t, and the dot denotes time differentiation.

Definition 3.1: Equilibrium State

A vector xe € R is said to be an equilibrium state of the system described by

Eq. (3.1) at time to if
f(xe,t) =0 Vt>to (3.2)

If xe is an equilibrium state of Eq. (3.1) at time to, then xe is also an equilibrium
state of Eq. (3.1) at all times t; > to. In other words, a motion initiating exactly
at xe at some time, remains there for all time. -

Definition 3.2: Stability of an Equilibrium State

The equilibrium state xe, or the équilibrium solution x(t) = xe, is said to be stable,
if for any given to and positive ¢, there exists a positive §(¢, to) such that every time
varying trajectory (or solution) x(t) initiating-(time to) at a point xg which lies
within in 2 é-neighborhood of xe {llxg —xell <6, xg = x(to)} remains for all
time within an e-neighborhood of xe {|[x(t) —xef| <€ Vt2 to}. The equilibrium
state is said to be unstable if it is not stable.

=
Definition 3.3: Asymptotic Stability of an Equilibrium State
The equilibrium state xe is said to be asymptotically stable, if
(2) it is stable (Definition 3.2), and if in addition
(b) for any to, there exist a §1(to), such that
lIxq — xell < & implies that tl_xoxg x(t) — xe (3.3)
- =

If § and &, are not functions of to, then the equilibrium state is said to be
uniformly stable and uniformly asymptotically stable, respectively. Definitions 3.2
and 3.3 constitute the two basic definitions of stability of an equilibrium state
(2 fixed point in the state space) for an unforced continuous time system. More
generally, we need to consider the stability of a trajectory or a motion. Qualitatively,
stability of a trajectoryis concerned with whether or not a perturbed motion remains
near the unperturbed trajectory, or diverges from it. Stability of a motion is of
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central interest in many practical feedback control situations whereby a system is
designed to execute a large nominal motion, and control inputs must be developed
not only to generate the nominal motion, but also closed loop feedback is required
to stabilize neighboring motions, with respect to the nominal motion, so that the
actual system will behave in a near-nominal fashion.

Definition 3.4: Stability of a Motion

The motion x(t) is said to be stable if, for all initial times to and prescribed positive
¢, there exists a positive §(¢, to), such that

lx(t) -%(t)ll<e Vtto if [lxo—Xoll<$

where x(t) and X(t) are neighboring trajectories with the given initial conditions
xg and X, respectively, at time to.
"

This bounded motion stability property is sometimes referred to as “path stabil-
ity.” Qualitatively, path stability means that “if the perturbed initial state X(to) is
near x(to), then the ensuing perturbed trajectory %(t) will remain near x(t) for all
time t.” :

Definition 3.5: Asymptotic Stability of a Motion
The motion x(t) is said to be asymptotically stable if

(2) it is stable (Definition 3.4), and if in addition

(b) for any to, there exist a positive §; (to), such that

lixo — %oll < &1 implies that lim [ix(t) — X(t)|| = 0 (3.4)

Note that X(t) is any member of the set of neighboring (perturbed) trajectories
satisfying Eq. (3.4), and all members of this set asymptotically approach x(t).

‘The above definitions are not directly concerned with the global properties of
systems, but of the local motion in a finite local neighborhood of an equilibrium
state or a motion of the system of differenital equations. If a system has a globally
asymptotically stable equilibrium state, then it is obviously the only equilibrium
state, and every motion converges to that unique equilibrium. An analogous global
stability property can be defined for the stability of 2 motion.

The simplest class of Lyapunov stability analysis methods arises in the context
of systems described by linear unforced differential equations. We summarize some
of the central ideas and results below.

Consider the linear system

x(t) = A(t)x(t)

ol
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which obviously has an equilibrium state at the origin. This linear system can be
classified as stable, asymptotically stable, or unstable, depending on the stability
of the origin [Vidyasagar 1978], [Willems 1970].

Now, we introduce two definitions associated with the concept of positive definite
functions, these are of central importance when applying Lyapunov stability theory.

Definition 3.6: Positive Definite Function

A singled-valued function U(x), which is continuous and has continuous partial
derivatives with respect to the components of the vector X, is said to be positive
definite in some region 2 about the origin if it vanishes at the origin and is positive
elsewhere, i.e.,

(@) u@E)=0 |
(i) U(x) >0 for all nonzero x €

-
If the positivity condition (ii) is relaxed to simply the non-negative condition
U(x) > 0for all x € Q, then U(x) is said to be positive semidefinite. If the inequality
sign in (ii) is reversed, then the condition fora negative definite function is obtained.
If 2 function is neither positive nor negative definite, then it is indefinite.

Definition 3.7: Positive Definite Quadratic Forms-

In the analysis of linear dynamical systems, quadratic functions of the state vector
arise often in the context of energy, stability and control analyses. Especially
important are symmetric quadratic forms. The quadratic form U(x) = TQx said
to be positive definite if

U(x)=xTQx >0 for all nonzero x €R"

where Q is a real symmetric matrix.
. . u

Definition 3.7 is equivalent to requiring that all the eigenvalues of Q are strictly
positive, such a matrix is naturally called a positive definite matriz.

Further discussion of these concepts is presented in [Vidyasagar 1978] and
[Willems 1970].

The following example illustrates the ideas underlying the above discussion.
Example 3.1

Consider the functions:

Ui(x) =3 +x3 + x3 and Uz(x)=(x1+x2+ xa)?.

Clearly U, satisfies the condition of Definition 3.7, therefore it is a positive definite
function in a three-dimensional space, but Uj is only positive semidefinite if the
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112 Stability and Control of Nonlinear Mechanical Systems Ch. 3

underlying space has more than three dimensions. Uy is only positive semidefinite
in three space, since it is zero everywhere in the plane x; + x2+x3=0.

392 LYAPUNOV STABILITY THEORY (LYAPUNOV'S DIRECT
METHOD)

The central ideas of the Lyapunov stability theorem are now introduced. For a
given general nonlinear, forced, dissipative mechanical system, it is often useful to
consider a conservative idealized approximation of system without the dissipative or
nonconservative external forces acting. For this idealized nonlinear system, suppose
that there exists one equilibrium state xe of the system. Also suppose that the total
mechanical energy or Hamiltonian of this idealized system is a positive definite
function and is an exact integral of the idealized system. For a broad class of
practical applications, the total energy or Hamiltonian of an idealized conservative
system is a suitable Lyapunov function for studying the stability of the system,
including dissipative internal and external forces; for many applications, it naturally
occurs, or can be arranged that the equilibrium state is the target state for the
system. More generally, a candidate Lyapunov function must belong to a class of
admissible ‘energy’ functions which have as the most fundamental property that
they are zero at the equilibrium state and positive everywhere else.

Now let us assume that the system is initially perturbed to a state neighboring
the equilibrium point where the energy level is positive by assumption, and we
consider the time evolution of the distance to the equilibrium as measured by the
energy function. Depending on the nature of the selected “energy” (Lyapunov
function), the stability of the motion may be described qualitatively as follows:

(i) if the system dynamics evolve such that the initial energy of the system is not
increasing with time for all starting points in 2 finite neighborhood, we can conclude
that the equilibrium state is stable, :

(ii) if the system dynamics evolve such that the energy of the system is monoton-
ically decreasing with time for all initial conditions in the neighborhood (and thus
eventually approaches zero), the equilibrium state is asymptotically stable,

(iii) if the energy of the system is increasing with time, for any initial condition in
the neighborhood, then the equilibrium state is unstable, and

(iv) if the chosen energy measure is indefinite (i.e., it is neither strictly decreasing
nor increasing), then no conclusion can be drawn on the stability of the system.
The following theorem, which is a rigorous statement of the above remarks, is the
basic stability concept underlying Lyapunov’s direct (second) method.

Theorem 3.1: Stability Theorem

The equilibrium state xe is stable if there exists a continuously differentiable
function U(x) such that -

NRL
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(i) U(xe)=0
(ii) U(x)>0 for all x # xe, X €EQ
(iii) U(x) <€ forallx#xe,x€Q

where U(x) denotes the time derivative of the function U(x), and Q is some region
containing xe. Notice that the “energy rate” U(x) is evaluated along a typical
trajectory x(t), and the conditions (i) and (iii) must hold along all infinity of
trajectories of the dynamical system, which ensue from initial states in Q.

=

A modest perturbation of Theorem 3.1 (making the final inequality strict) results
in the following theorem, which provides necessary and sufficient conditions for

asymptotic stability.

Theorem 3.2: Asymptatic Stability Theorem

The equilibrium state xe is asymptotically stable if there exists a continuously
differentiable function U such that

(i) U(xe) =0
(i) U(x)>0 for all x # xe, X €Q
(iii) U(x) <0 forallx#xe,x €D

Both of the previous theorems relate to local stability in the vicinity of the
equilibrium state. A system has global asymptotic stability with respect to 2 unique
equilibrium point if the following theorem is satisfied.

Theorem 3.3: Global Asymptotic Stability Theorem

The equilibrium state xe is globally asymptotically stable if there exists a continu-
ously differentiable function U with the following properties:

(i) U(xe)=0

(ii) U(x)>0 for all x # xe
(iii) U(x) <0 forall x # xe
(iv) U(x) — o0 as ||x|| — o0

Note that the stable region Q extends to infinity in Theorem 3.3. The reader is
referred to [Vidyasagar 1978] for further discussion, including the complete proofs
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of the above theorems. Observe that there is no one unique Lyapunov function for
a given system; some may be better than others. This is especially important when
we seek the “least conservative” stability information when, for example, we seek
to determine the size of the Q region in which we have stability. If a poor choice
of U(x) results in a pessimistic conclusion that the stable region Q is much smaller
than it actually is, then this is an obvious concern. It also should be noted that ifa
Lyapunov function cannot be found, nothing can be concluded about the stability of
the system, since the Lyapunov stability theorem provides only sufficient conditions
for stability. Therefore, the conditions required to prove stability, based upon an
arbitrary choice of Lyapunov function, may be very conservative.

Unfortunately, the above classical Lyapunov theorems are not constructive; these
stability theorems do not reveal a process to find a candidate Lyapunov function. It
is often difficult to find a suitable Lyapunov function for a given nonlinear system.
The physical and mathematical insights of the analyst have historically played an
important role in most successful applications of this approach; however, more
systematic methods have recently emerged [Oh 1991] , [Junkins 1993, 1991, 1990]
for certain classes of control design problems. In particular, when the stability
analysis and the control design analysis are merged, one is often able to exploit the
additional freedom to simultaneously design control laws and select a Lyapunov
function which guarantees stability of the closed-loop (controlled) system.

Example 3.2
Consider the system described by the nonlinear ordinary differential equation

%(t) — ex?(t)x(t) + x(t) =0

The objective is to use Lyapunov analysis to investigate the stability of motion near
the origin for this system.

Introducing the state variable representation of this system with the definitions
Xj = X, X2 = X, we write the equivalent first-order system

. o 2
X1 =Xz, X2 = —X1-+ &XiX2
’ 1

It is easy to see that the above “oscillator with quadratic damping” has an
equilibrium state at the origin (x1,x2) = (0,0). Our goal is to determine if this
state is stable. For this purpose, let us choose the simplest candidate Lyapunov
function is 2U(x;,x3) = x? + x3. We note that a physical motivation for choosing
this positive definite function as a candidate Lyapunov function is that it is an exact
(total mechanical energy) integral of the system, for ¢ = 0. Clearly, this candidate
function satisfies the two most fundamental necessary conditions that U(0,0) =0
and U(x;,x32) > 0 in any neighborhood of (0,0), and we find that

U(X1,X2) = X1X; + X2X2 = X1X2 +xz(-x1 + (XEX;) = cx}x%

Thus U is a positive definite funclion which is strictly decreasing along all system
trajectoriesif € < 0. Therefore, by the above theorems, the origin (0,0) is a globally
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stable equilibrium point for € = 0, is globally asymptotically stable for ¢ < 0, and
is globally unstable for ¢ > 0. Thus Lyapunov analysis was completely successful in
establishing the global stability characteristics of this system.

Example 3.3
Investigate the stability of the system of nonlinear differential equations

x1=x(3 +x3-1)~x3, X=X +x2(x] +x3 = 1).

We try the candidate Lyapunov function 2U(x;,X2) = x} +x3, which is an exact
integral of the simplified system X; = —X2, X2 = X3. This choice for U is obviously a
positive definite function having its global minimun at the origin. It is also obvious
by inspection, that the origin is the only equilibrium point of the nonlinear system.
Investigating the energy rate, we find

Uy, x2) = (o + x3)(x] +33 - 1)

It is evident that U is negative definite over the finite circular region
{(x1,%2)} x3 +x3 < 1}, which includes the equilibrium point at the origin. Hence,
the origin (0,0) is an asymptotically stable equilibrium state of this system. Note
that all points within the unit circle are asymptotically attracted to the origin.
However, because U is not a negative definite function over all of R", we cannot
conclude global asymptotic stability without more information. While we are cer-
tain we have stability within the unit circle, this conclusion results from a particular
choice of U(x;,x2), and without further analysis, we cannot conclude that the sta-
ble region is not actually larger than the unit circle. However, since U is positive
everywhere outside the unit circle, we conclude, using the following Theorem 3.4,
that we have instability for all trajectories whick initiate outside the unit circle and
asymptotic stability for all trajectories initiating inside the unit circle. Thus, we
are able to use the stability and instability insights simultaneously to “establish
the complete story” vis-a-vis the global stability properties of this system, since
the stable and unstable regions have a mutual boundary and together the stable and
unstable regions span all of state space R2.

The following theorem is sometimes useful in avoiding a fruitless search for
Lyapunov functions for systems which are inherently unstable in certain regions
of state space. This theorem is also useful in obtaining theoretical closure of
the stability analysis, in the sense that it is sometimes possible simultaneously to
apply the instability theorem with the stability theorems to establish conclusively
a particular system’s global stability properties. In Example 3.3, for example, we .
concluded that our simple choice on U gave us all of the stability information (i.e.,
the system is stable only within the unit circle).
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Theorem 3.4: Instability Theorem

The equilibrium state xe is unstable in Q if there exists a continuously differentiable
function U such that :

(i) U(xe) =0 and U(xe) =0
(i) Ux)>0 forallx#xe,x€Q
(iii) and there exists points x arbitrarily close to xe such that U(xe) > 0

If one can find eny function U satisfying the above conditions, then xe is a
completely unstable equilibrium point in Q, and the quest for Lyapunov functions
can be halted. In Example 3.3, the Q for the instability theorem is clearly the
compliment of the Q for the asymptotically stable region, and it is apparent that
the stable and unstable regions being complimentary, (together spanning all of state
space) is the key to establishing global stability/instability information.

3.3 STABILITY OF LINEAR SYSTEMS

3.3.1 Lyapunov Theorem for Linear Systems

Lyapunov’s method is easily applied to test the stability of a linear system. Consider
an autonomous system described by the linear vector differential equation

x(t) = Ax(t) (3.5)

The above system is said to be stable in the sense of Lyapunov, if the solution of
Eq. (3.5) tends toward zero (which is obviously the only equilibrium state if A is of
full rank) as t — oo for arbitrary initial condition.

Consider the case of a constant A matrix. If all eigenvalues of A are distinct,
the response of system (3.5) due to initial condition xg can be written as

x(t) =) ¢ xge**s, (3.6)

i=1

where JA; are the eigenvalues of A, ¢. and ¥, are, respectively, the right and left
eigenvectors of A associated with A;.-k"or the repeated eigenvalue case, the situation
is more complicated (i.e., we should solve for the generalized eigenvectors of A). The
generalization of Eq. (3.6) for the case of generalized eigenvectors has a similar form,
but is not discussed here [Chen 1984]. From Eq. (3.6), we can see by inspection
that the system is asymptotically stable if and only if all the eigenvalues of A have

negative real parts, i.e.,
R[A(A)) <O . (3.7)
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Thus, we have the well known result that the stability of a linear constant-
coefficient dynamical system can be completely characterized by the signs of the
real parts of the eigenvalues of the system. This approach to stability analysis yields
both necessary and sufficient conditions. However, calculating all the eigenvalues of
the system matrix is not always desirable, especially for high-dimensioned systems.
As will be evident below, other stability viewpoints lead to important insights
and generalized methods, especially vis-a-vis stability analysis for time-varying,
distributed-parameter, and nonlinear systems.

For the linear dynamical system of Eq. (3.5), we choose a symmetric quadratic

_form as a candidate Lyapunov function

2U(x) = xTPx (3.8)

where P is a positive definite, real symmetric matrix. Thus U is positive definite
with it’s global minimun at the origin, which is obviously an equilibrium state.
Differentiating Eq. (3.8) and substituting Eq. (3.5) into the result gives

 U(x) =xT(ATP+PA)x. (3.9)

Using the Lyapunov stability Theorem 3.2, we require U(x) to be negative definite.
We can rewrite the energy rate of Eq. (3.9) as

U(x) = —xTQx. (3.10)

So we see that, for asymptotic stability, P and Q must be positive definite matrices
which satisfy the condition ’
. ATP+PA=-Q. (3.11)

Equation (3.11) is commonly known as the algebraic Lyapunov equation.

To examine the stability of a linear system via the above Lyapunov approach we
can proceed as follows: “Choose Q to be any positive definite matrix for a given A,
and check the eigenvalues of the resulting P which we obtain by solving Eq. (3.11),
if P is positive definite (all positive eigenvalues), the given system is asymptotically
stable, while if P has any negative eigenvalues, the system is unstable.” One of the
potential difficulties with selecting Q and solving the Lyapunov equation (which, of
course, depends on the system matrix A) is the uniqueness of the resulting solution
for P. The following theorem gives the necessary and sufficient conditions for the
Lyapunov Eq. (3.11) to have a unique solution.

Theorem 3.5

If {\1,...,2n} are the eigenvalues of the éystem matrix A, then the Lyapunov
equation [Eq. (3.11)] has a unique solution P if and only if

4\;-}-4\}{#0, i,j=1,...,n

where ()M denotes complex conjugate. - =
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The reader is referred to [Chen 1984] for a proof of the above theorem. Thus, -
we cannot solve the Lyapunov equation for undamped second-order systems having
pairs of eigenvalues on the imaginary axis (including rigid body modes, whose
eigenvalues reside at the origin of the complex plane), and so stability analysis
for systems having a neutrally stable subspace cannot be completed via solution of
an algebraic Lyapunov equation.

Theorem 3.6: Lyapunov Stability Theorem for Linear Systems

A linear system is asymptotically stable or, equivalently, all the eigenvalues of A
have negative real parts, if and only if for any given positive definite symmetric
matrix Q there exists a positive definite (symmetric) matrix P that satisfies the
Lyapunov equation , .

ATP+PA=-Q (3.12)

]

The proof of this theorem is given in [Junkins 1993). Note that the Lyapunov

equation is equivalent to a set of n(n + 1)/2 linear equations in n(n + 1)/2

unknowns for an n-k order system. The Lyapunov equation can be solved by using

numerical algorithms utilizing QR factorization, Schur decomposition, or spectral

decomposition; however, our experience indicates that the most efficient and robust
algorithms utilize the QR factorization [Junkins 1993).

Example 3.4
Consider the system matrix
A= -2 1
v “1-1 1]
The simplest choice of Q is the identity matrix or some other diagonal matrix; we
take Q = I for this example, and let the three distinct elements in P be denoted

P=[pl Pz] .
P2 P3

Substituting this A and P into the Lyapunov equation [Eq. (3.11)] yields the
following three linear algebraic equations

. =4p1—2p2 = -1
Pi1~p2—p3 = 0
2p2+2p3 = -1

The solution of these three equations is straightforward; we find

-1/2 3/2}

p3=—2 = P=
3/2 -2
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Even though we have a unique solution, the resulting matrix P is not positive
definite. Hence, we conclude that the system is unstable, and implicitly, that not
all of the eigenvalues of A have negative real parts. We would have to calculate the
eigenvalues to make further assessments of eigenvalue placement. .

n

In the case of a linear time-varying system x(t) = A(t)x(t), the sufficient
conditions for the stability of the equilibrium state can be analyzed based on the
concept of matrix measure [Vidyasagar 1978], and if the system is asymptotically
stable, then a quadratic Lyapunov function exists for this system. Of course,
conventional eigenvalue analysis is not applicable to the time-varying case and,
therefore, the more general Lyapunov approach provides one possible avenue to
characterize the stability of nonautonomous systems.

3.3.2 Linear Dynamic Systems Subject to Arbitrary Disturbances

To make the Lyapunov stability analysis in this sectiog more complete, we briefly
discuss stability in the presence of disturbances. We consider the class of systems
described by the matrix differential equation

x(t) = Ax(t) + £(t, x(t)) (3.13)

where the uncertainty and/or perturbations of the system are assumed representable
by arbitrary nonlinear function f(t,x(t)) (except we require f(t,0) = 0, so that the
origin of the state space remains an equilibrium state for this class of model errors
or disturbances). Furthermore, we assume that exact expressions for £(t,x(t)) are
unknown and only bounds on f(t, x(t)) are known. The central question we address
here is the following: “Given that A is asymptotically stable, and without using
specific knowledge of £(t, x(t)), is it possible to obtain a bound on all £(t, x(t)) such
that the system maintains its stability?” Put another way, can we determine some
measure of how large f(t,x(t)) can be without destabilizing a given stable linear
system? Some insights on these issues are embodied in the following theorem:

Theorem 3.7 [Patel 1980]

Suppose that the system of Eq. (3.13) is asymptotically stable for f(t, x(t)) = 0, then
the system remains asymptotically stable for all nonzero perturbations £(t,x(t))
which are sufficiently small that they satisfy the following inequality

U]l _ min M(Q) _

lixll < max AP = #* (3.14)

where P and Q satisfies the following Lyapunov equation
ATP 4+ PA=-2Q

and where the otherwise arbitrary f(t, x(t)) vanishes at the origin f(t,0)=0. =
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The proof of this theorem is given in [Patel 1980], [Junkins 1993]. Since P is a
positive definite matrix, the maximum eigenvalue of P is same as the largest singular
value of P. It has been also shown in [Patel 1980] that when the identity matrix
is chosen for Q, per in Eq. (3.14) is 2 maximum and for this choice, ppr can be

d as
expresse ; 1

Ber = ax A(P) ~ Omax(P)
The above bound is often very conservative, since it is only a sufficient condition
for the stability of the system, and this stringent bound is not usually necessary.
An important special case is for the class of perturbations having the linear
structure

(3.15)

(8, x(t)) = Ex(t) (3.16)

Clearly this corresponds to an additive error in the A matrix (i.e.,, A — A +E).
We can apply Theorem 3.7 to arrive at the desired result; we can establish that the
system remains stable if E is bounded by the following modified stability margin:

min[-R{%(A)}] ’
21 — g

(3.17)

where K(®) is the condition number of ®, and @ is the normalized eigenvector
(modal) matrix of A. The condition number definition used here is the ratio of the
largest and least singular values of &,

Tmax(P)
Omin (Q)

As is evident in the above discussion, the stability margin is closely related to
the Patel-Toda robustness margin; the “more stable” the nominal system is, the
larger the bound on the allowable perturbation E becomes. However, the important
ingredient evident in Eq. (3.17) is the fact that a large condition number K(®)
degrades the effective stability margin. Qualitatively, if the eigensolution is highly
sensitive (large condition number), then it is easier to introduce destabilizing
perturbations, and generally, the stability margin (distance of eigenvalues from the
imaginary axis) should be considered simultaneously with a measure of sensitivity.
The intimate connection of the Patel-Toda robustness measure (for stability of linear
dynamical systems in the presence of additive perturbations) to the Bauer-Fike
Theorem (for conditioning of the algebraic eigenvalue problem [Junkins 1993])
is clear. o
Note that the condition number X(®) approaches its smallest possible value of
unity if & is any unitary matrix (one for which ®#® =1I), and the upper bound on
the condition number is infinity which occurs if @ is any singular matrix. Observe
that an infinity of unitary matrices exist, some of them are “closer” to & than
others. When one has the freedom to modify A (and therefore ®), a natural question
arises: for a given class of A-modifications, how can we make & as nearly unitary

K(3) =
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as possible? Of course, one way to modify the A matrix is through design of a
feedback controller, and one avenue toward designing gains in linear robust control
laws is to maximize the right-hand side of Eq. (3.17) by minimizing K(®). It is also
of significance that choice of actuator locations considered simultaneously with the
design of control gains can often significantly reduce the condition number K(®).
These ideas provide some of the motivation for the robust eigenstructure algorithms
and actuator placement optimization approaches presented in {Junkins 1993].

3.4 NONLINEAR AND TIME VARYING
DYNAMICAL SYSTEMS

In this section, we present stability analysis methods for nonlinear systems. In
section 3.4.1, we consider a method known as Lyapunov’s indirect (or first) method,
whereby we can determine partial stability information for nonlinear systems by
examining the behavior of locally linearized systems. In section 3.4.2, we develop an
important result which provides easy-to-test sufficient conditions to determine if we
have asymptotic stability in spite of the commonssituation that the energy function’s
time derivative is only a negative semidefinite function of the state variables. In
addition to the classical stability analysis for which the Lyapunov methods were
developed, these ideas can be used to motivate design methods which yield control
laws for control of large maneuvers for distributed-parameter systems.

This approach is used throughout the remainder of this chapter. In section
3.5, we consider a nonlinear multibody idealization of two robots cooperatively
manipulating a payload. Both open-loop and feedback-control designs are studied,
and Lyapunov methods are used to ensure path stability of the resulting closed-loop
dynamics, using a tracking control law.

3.4.1 Local Stability of Linearized Systems

Stability analysis of linear motion arises often in practical analysis of nonlinear
systems when we are concerned with motion near an equilibrium state. The results
presented in section 3.3.1 enable us to obtain necessary and sufficient conditions
for the stability of linear systems, but also provide us a method for determining
the local stability of a nonlinear system by linearization, which is called Lyapunov’s
indirect method.

Consider the autonomous system

x(t) = f[x(t)] with f(xe)=0 (3.18)
Let z(t) be the perturbation (departure motion) from the equilibrium state as
x(t) = xe + z(t) (3.19)

Using Taylor’s series expansion of f(-) around the equilibrium state xe, we can write

£[2(t) + xe] = £(xe) + [g]x=Xez(t)+O[z(t)]2 6w
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Usiﬁg Eq. (3.20) in Eq. (3.18) givés the perturbation equation
#(t) = Az(t) + O[z(t)]? (3.21)

where A denotes the Jacobian matrix of f evaluated at x =xe, A = [%

X=Xe
and so we find the linear, constant coefficient matrix differential equation '

3(t) = As(t) (3.22)

The following theorem is given here (without proof); this is the main stability
result of Lyapunov’s indirect method.

Theorem 3.8: Lyapunov's Indirect Method

If the linearized system [Eq. (3.22)] is asymptotically stable, then the original
nonlinear system [Eq. (3.18)] is also asymptotically stable if the motion initiates
in a sufficiently small neighborhood containing the equilibrium state.

The above theorem is useful since we can analyze the local stability of an
equilibrium state of a given nonlinear system by examining a linear system.
However, the conclusions based on linearizations are local, and therefore to study
global stability, we should rely on Lyapunov’s direct method. On the other
band, if one can find all equilibrium points and investigate their local stability,
a fairly complete picture of the overall global stability characteristics can often
be derived. Note that one key shortcoming (of the indirect approach) is the
absence of information on the size or boundary of the “domain of attraction” of
each locally stable equilibrium point; this is precisely the information which a
completely successful application of the direct approach determines. Finally, we
note the most important point: if the linear motion is critical (c.g., zero damping,
some eigenvalues have zero real parts), then the stability of the locally linearized
analysis should be considered inconclusive and nonlinear effects must be included to
conclude local stability or instability.

3.4.2 What to Do When U is Negative Semidefinite?

Several subtle possibilities arise if the function derived for U is not negative definite.
For a significant fraction of the practical occurrences of this condition, including
several applications considered subsequently in this chapter, we can_prove global
asymptotic stability in spite of the fact that the function derived for U is negative
semidefinite. The main results from the traditional literature for dealing with this
problem are embodied in a theorem due to [LaSalle 1961); this theorem sometimes
allows us to conclude that we have local asymptotic stability for the case that U> 0
and U < 0, provided we can prove that the equilibrium point is contained in a region
of state space known as the marimum invariant subspace M.
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The maximum invariant subspace is, essentially, the largest domain M containing
an equilibrium point, for which all trajectories evolve such that U > 0and U < O for
all time along the trajectories, with U = 0 being approached only occasionally (at
most) at isolated apogee-like states that are not equilibrium points (i.c., U is negative
almost everywhere except its asymptotic approach to zero at the equilibrium state
which is a minimum of U).

It is usually easy to identify the subset Z of points in the state space for which
U = 0, but LaSalle’s maximum invariant subspace M is, in general, a subset of
7. The main challenge of applying LaSalle’s theorem then reduces to the quest
to identify or approximate M; this is difficult when the differential equations are
complicated nonlinear functions. While these ideas are elegant, we elect not to
discuss the search for M in detail, but rather we present a recently developed result
[Mukherjee 19922, 1992b, 1993], [Junkins 1993] which is often easier to apply.

Prior to stating the theorem, we introduce some notations: Let x =0 be an
equilibrium state of the nonlinear system x = f(t,x), where £ is a smooth, twice
differentiable n-vector function of t and x. Note that the trajectories of the nonlinear
differential equation X = f(t,x) generates a smooth vector field in the region
which includes x = 0. Let U(t,x) bea scalar analytic function in Q, which is locally
positive definite. Suppose U(t,x) is only negative semidefinite. Let Z denote the
set of points for which U(t,x) vanishes. We will be concerned with the first k

derivatives %“:’-, evaluated on the set Z. We are now prepared to state the theorem:

Theorem 3.9

A sufficient condition for asymptotic stability, when U > 0and U<0forallxeQ
is that the first (k-1) derivatives of U vanish on Z, up through some even order (k-1)
%‘3—:0, V x€Z, for j=1,2,..., k-1 (3.23)

and the first (the kth) nonzero derivative of U (evaluated on Z) is of odd order and
is negative definite for all points on Z:

dkU
— <0, V x€Z, forkodd (3.24)
dtx
In the event that all infinity bf U derivatives vanish on Z, sufficient conditions for
stability are that U is positive definite and that x =0 is the only equilibrium point.

"
The proof of this theorem is given in [Mukherjee 19922,b]. As evident below,
this theorem is easy to apply to nonlinear and distributed parameter systems. In .

the following example, it is also shown to be useful for determining the stability of
time varying systems. _—

K



124 Stability and Control of Nonlinear Mechanical Systems Ch. 3

Example 3.5

[Mukherjee 1992a] .

Consider the damped Mathieu equation: X; =xz, X3 = —x3 —(2+ sint)x;.
We select the candidate Lyapunov function: U(t,x;,x2) = x;2 + (ﬁ}i’n—ti' which
we observe is positive definite and analytic for all (t,x;,x2). Upon differentiation
of U, and substitution of the equations of motion, we find that

. 4 4 2 sint + cost

000) = —xa’g), where g(y)= E It

Even though U(x) is nonpositive, since U(x) does not depend upon x;, it is obviously
not negative-definite and without further analysis, we can only conclude mere
stability; however, we'd like to make a stronger statement and conclude asymptotic
stability. This can be done by considering the applicability of Theorem 3.9. Note
that the set Z of points for which U(x) vanishes is the set of all real values for x,,
and zero values for x,. Upon taking the second and third derivatives of U, and
evaluating them on Z, we find that

a2y BU o
&?_0, and -d?——2(2+smt) gt)x1%, V xe2Z

Since the second derivative of U vanishes on Z and the third derivative is negative
on Z, except at the origin, we conclude that all of the conditions of Theorem 3.9
are satisfied; indeed this system is proven globally asymptotically stable.

3.43 Lyapunov Control Law Design Method

Here, we present a method for generating globally stable feedback coatrol laws for
maneuvers of nonlinear systems and distributed parameter systems. A Lyapunov
function is selected which is conserved for the uncontrolled system. Then when
the control u(t) # 0 is considered, U(x) depends upon u(t) through the equations
of motion. One strategy is to select the control function u(t,x) (from a set of
admissible controls) to make U(x) as negative as possible; this Lyapunov Optimal
control strategy ensures that U(x) will locally approach zero as fast as possible.
On the other hand, any control law which makes U(x) negative is asymptotically
stabilizing, and in many instances, it will be seen that very simple, yet globally
stable control laws can be determined which are attractive for applications.

We will use specific dynamical systems to introduce Lyapunov control design
methods for nonlinear and distributed-parameter systems. A useful viewpoint is to
consider simultaneously U(x) and u(t,x) “available for selection” in the design pro-
cess; the class of problems for which globally stable feedback laws can be obtained
is surprisingly large. There is coupling between the selection of the Lyapunov func-
tion and the corresponding stabilizing control laws. We place the initial emphasis
upon using work/energy methods together with stability theory to determine the
structure of a stabilizing feedback law and thereby parameterize an’ infinite family
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of stable controllers. Conventional nonlinear programming algorithms can then be
invoked to optimize some specified -closed loop performance criterion over the sta-
ble set. This gives rise to “Lyapunov optimal” control. Although we subsequently
develop methods for controlling multi-body manipulators, and for distributed pa-
rameter systems governed by hybrid coupled sets of ordinary and partial differential
equations, we first consider a system described by a 6-th order set of nonlinear, or-
dinary differential equations.

Example 3.6 Large Angle Rigid-Body Maneuvers

Some key ideas are easily introduced by considering general three dimensional
nonlinear maneuvers of a single rigid body. The equations governing large motion
can be written as [Junkins 1986)

Loy = (I2 = Is)waws +uy

Iy = (Is — I1 )waw; +u2

Taws = (I; — )wiwz +u3 .

24 = w; — w2q3 -+ wsqz + q1(Qw1 + Qw2 + qaws) (3.25)
232 = wp — w3qy +w1qs + q2(Qw1 + qawz + qaws)

2qs = w3 — w1qQ2 + w2q1 + q3(quw1 + Qw2 + qaws)

where (w;,w2,ws) and (qy,q2,q3) are the principal axis components of angular
velocity and the Euler-Rodriguez parameters (“Gibbs vector”), respectively. Note
that (I, I,,Is) and (uy, uz, uz) are the principal moments of inertia and the principal
axis components of the external control torque, respectively.

For the case of zero control torque, it can be readily verified that total rotational
kinetic energy is an exact integral of the motion described by differential Eq. (3.25),
viz., 2T = (jw} + Iow? + I;w?). Motivated by the this total system energy integral,
we investigate the trial Lyapunov function

U = 3(hef +10f + Iswd) + ko(a? +qf + o)

= kinetic energy + kotan? (g) (3:26)
where ¢ is the instantaneous principal rotation angle (about the instantaneous
Eulerian principal rotation axis, from the current angular position to the desired
final angular position of the body {Junkins 1986]. It is apparent that the additive
term ko(q? + q2 + g2) can be viewed as the potential energy stored in a conservative
spring, and as will be evident below, this is just the most obvious choice for a
positive measure of departure from the orientation qy =0, 2 =0, q3=0) . We
can anticipate that the system dynamics will evolve such that U is constant if the
only external torque is the associated conservative moment. Of course, we are
not interested in preserving U as a constant, but rather we seek to drive it to
zero, because it measures the departure of the system from the desired equilibrium
state at the origin. We further anticipate the necessity to determine an additional
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judicious control moment to guarantee that U is a decreasing function of time. It
is obvious by inspection that U is positive definite and vanishes only at the desired
state q; = w; = 0. Differentiation of Eq. (3 26) and substitution of Eqs. (3.25) lead
directly to the following (“power”) expression for U:

U Z“-’l [ul + koch(l + ‘h + Q2 + %)] ' (3'27)

i=1

Of all of the infinity of possible control laws, we can see that any control u;
that reduces the bracketed terms to a function whose sign is opposite to w; will
guarantee that U is globally negative semi-definite. The simplest choice consists of
the following: Select u; so that i-th bracketed term becomes —kjw;. This gives the
control law

i = — [kiwi + koqi(1 +q + 63 + 43)], i=1,23 (3-28)

The closed loop equations of motion are obtained by substitution of the control
law of Eq. (3.28) into the equations of motion of Eq. (3.25) to establish

Loy = (Iz = I3)waws — [kiwy + koqr (1 +q? + o3 + q2)
Lw, = (Is—I))wswy — [kowz + koqa(1 + qf + q3 + ) (3:29)
Lz = (1 — Ip)wyws — [kews +koqs(1l + qf + qf + q3)

Since U = —(k;w? + kow? + kaw?) does not depend upon the q's, it is only a
negative semi-definite function, and while we have stability, if we choose all k; > 0,
we cannot immediately conclude that we have asympiotic stability. We can prove
that we do indeed have asymptotic stability, for illumination we estabilish this truth
by two logical paths.

Path 1: This analysis is physically motivated, we try to see if there is some
equilibrium point or trajectory other than the target state (the origin) where
the system can get “stuck” with U(x) = 0. We directly investigate the above
three closed loop equations of motion [Eqs. (3.29)] for. the existence of equilibrium
points in these nonlinear closed loop equations of motion. It can be verified
that (q1,q2,93,0;,w2,w3) = (0,0,0,0,0,0) is the only equilibrium state where
all velocity and acceleration coordinates vanish. In fact, imposing the conditions
(@1,02,03) = (0,0,0) and (wy,w2,ws) = (0,0,0) on the above closed loop equations
of motion immediately gives the requirement that the q’s satisfy the three equations

0=—[koqi(1-+qi+a3 +qf)], fori = 1,23

and it is obvious by inspection that these three nonlinear equations are simultane-
ously satisfied only at the origin.

Since we have shown that (&) # 0,2 # 0,03 # 0), for (q1 # 0,92 #0,q3 ;é 0),
everywhere except the origin x = (q1,92,93,w1,w2,w3)T = (0,0,0,0,0,0)T, we
conclude that U(x) = 0 can only be encountered for (a1 #0, a2 #0,q3 #0) at
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(possibly) apogee-like points in the behavior of U (U instantaneously vanishes
but these points cannot be equilibrium states because (Wy # 0,2 # 0,03 #0).
Therefore, we are guaranteed that U(x) < 0 almost everywhere [thus, we have
the ideal situation that the largest invariant subspace is all of state space]. " We
asymptotically approach the origin from all finite initial states and, therefore, have
global asymptotic stability.

Path 2: This analysis is more formal and procedural (exactly analogous to
Example 3.5), we simply apply Theorem -3.9. First notice the set Z where U(x)
vanishes is the set of arbitrary real values for the s and zero values for the w’s. It

can be verified by direct differentiation of U that,.for general motion

2 3 : &u 2. -
%t_g- = -2 Z kjwiwi, and P -2 Eki(wiz + with;). (3.31)
i=1 i=1
Upon evaluation of these derivatives on Z where angular velocity vanishes
(w1,w2,ws) = (0,0,0), from the closed loop equations of motion, the nonzero accel-

eration components are ; = —ko(1 + a} + @2 +¢2)(qi/L;), we find that

d?U d3U 3 i\2
U _o, and SF=-B0+ad+ad+ad) Y k()
d de i=1 L

V x€Z (3.32)
Since the second derivative of U vanishes everywhere on Z, the third derivative is
negative-definite everywhere on Z, the conditions of Theorem 3.9 are fully satisfied,
and we again conclude that the nonlinear control law of Eq. (3.28) gives us globally
asymptotically stable attitude control.

Since we have shown U to be a positive-definite, decreasing function of time
along all trajectories, and since it vanishes at the origin, then the necessary and
sufficient conditions are satisfied for global Lyapunov stability. We have implicitly
excluded the geometric singularity (q; — o0) associated with this parameterization
of rotational motion as ¢ — nw; we can use the quaternion or Euler parameter
description of motion and avoid all geometric singularities as well. This path has
been successfully pursued in [Oh 1991}, [Wie 1989].

The nonlinear feedback control law of Eq. (3.28) guarantees stability of the
nonlinear closed-loop system under the assumption of zero model errors. In
practice, of course, guaranteed stability in the presence of zero model error is not
a sufficient condition to guarantee stability of the actual plant having arbitrary
model errors and disturbances. On the other hand, rigorously defining a region
in gain space, guaranteeing global stability for our best model of the nonlinear
system is an important step; it is reasonable to restrict the optimization of gains
to this stable family of designs. The determination of the particular gain values,
selected from the space of globally stabilizing gains, is usually based on performance
optimization criteria specified in consideration of the disturbance environment, -
sensitivity to model errors, desired system time constants, actuator saturation, and
sensor/actuator bandwidth limitations. :
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Before generalizing the methodology to consider multibody and partial differ-
ential equation systems, it is important to reflect on the selection of the Lyapunov
function previously given. Notice that, if a system has no inherent stiffness with
respect to rigid-body displacement, it is necessary to augment the open-loop energy
integral by a pseudopotential energy term [such as ko(q? + q3 + q3) in the preceding

_example]; generally speaking, the pseudoenergy term should be defined, if possible,

such that the resulting candidate Lyapunov function (U) is a positive definite mea-
sure of departure motion that has its global minimum at the desired target siate.
Then the still-to-be-determined controls are usually selected as simply as possible
(from an implementation point of view) to force pervasive dissipation (U < 0) of
the modified energy (Lyapunov) function along all trajectories of the closed-loop
system, and thereby guarantee closed-loop stability.

To illustrate the relationship between the choice of the Lyapunov function and
the resulting family of stabilizing control law, let us consider a slight variation
on [Tsiotras 1994] the above developments. In lieu of the Lyapunov functions of
Eq. (3.26), we choose a logarithmic measure of attitude error

U= % (Tyw? + w2 + Iawd) + koln (1+qf + a3+ a3) (3.33)

Proceeding analogously to the above developments, it is easy to verify that

s )
U= Zwi[u; + koaqi) (3.34)

i=1
so that we can see that the following linear feedback law is globally stabilizing
vy =-kogi—kiw;, i=1223 (3.35)

Contrasting the two stabilizing control laws of Egs. (3.35) and (3.28), it is clear
that the simpler linear law of Eq. (3.35) is likely more attractive as regards
implementation, unless the nonlinear feedback of Eq. (3.28) is found, in some
circumstances, to give a desirable closed loop response.

This example points out clearly the coupling between selection of the ”error
energy measure” and the resulting globally stabilizing controllers; the situation is
quite analogous to applications of optimal control theory, wherein there is coupling
between the choice of the performance index and the resulting optimal control law..
Although the above insights are useful, definitive criteria for optimal selection of the
Lyapunov function do not exist. However, the above examples suggest an attractive
strategy that defines the *main part’ of the Lyapunov function with relative weights
on the portions of total mechanical energy associated with structural subsystems
[Junkins 1993], and use of the work/energy method provides a very efficient bypass
of most of the algebra and calculus leading to the power equations, analogous to -
Eq. (3.27), for each particular physical system [Oh 1991]. The lack of uniqueness
of the Lyapunov function is not necessarily a disadvantage in practice because it
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is a source of user flexibility providing needed control design freedom qualitatively
comparable to the freedom one has in selecting performance indices when applying
optimal control theory. Indeed, formulating the Lyapunov function as a weighted
error energy to be dissipated by the controller is qualitatively attractive for both
linear and nonlinear systems, since this gives intuitive and physical meaning to the
Lyapunov function and the corresponding control gains.

3.5 COOPERATIVE CONTROL OF MULTIBODY
MANIPULATORS

3.5.1 Mechanics

Prior to addressing the first of two studies wherein the above ideas are applied,
consider the class of dynamical systems whose behavior is governed by the discrete
coordinate version of Lagrange’s equations

d soL aL . .
SE)-fme e
or, in matrix form' d 0L or
a(.ﬁ) ~5.=9 (337)

where the Lagrangian L is defined in the classical form £ = T — V. Restrictions
imposed in deriving Egs. (3.37) are such that the coordinates g; are independent ’
functions of time only and that the potential and kinetic energies have the functional
forms T = T(q,q,t), V=V(q), and the nonconservative virtual work has the
form §Wpe = N, Qibg; = QTéq. Thus, Eqgs. (3.37) are valid for nonlinear,
nonconservative systems as well as linear, conservative systems.

A modest generalization allows Eqs. (3.37) to be applied to significant classes
of redundant coordinate or constrained systems (i.e., the coordinates q; are not
independent). To accommodate kinematic constraints which depend on the gs and
their time derivatives, Lagrange multipliers can be introduced to generate additive
generalized constraint forces on the right-hand side of Eqs. (3.37) [Junkins 1986].
In particular, for m Pfaffian (linear in the generalized velocities) constraints of the
matrix form .

Aq+a,=0 . (3.38)

The generalized constraint force that needs to be added to the right-hand side
of Egs. (3.37) is the vector AT), where q is an N x 1 vector containing the
generalized coordinates, A = A(q) is an m x n continuous, differentiable matrix
function, a,(q) is a smooth, m x 1 vector function, and A is an m x 1 vector of
Lagrange multipliers. One standard solution process is to differentiate the kinematic
constraint of Eqs. (3.38) to obtain

AG+Aq+3,=0 o (3.39)
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Equation (3.39) can be solved simultaneously with Eqs. (3.37) for G and A, to
determine the coordinate accelerations and constraint forces as a function of the qs
and their time derivatives. Note that the N differential equations of Eqs. (3.37) must
be solved simultaneously with the m kinematic constraint differential equations
[Eqgs. (3.37)] in order to determine the N+m unknowns in the vectors § and A(t).
During recent years, significant methodlolgy has evolved for effecting numerical
solutions for differential/algebraic systems of equations, see Ahmad 1991 and

. Krishnan 1992 for discussion of the recent literature.

For a significant class of systems, the algebra and calculus required in a
straightforward application of Lagrange'’s equations can be dramatically reduced.
For the the most common case of natural systems for which the kinetic energy is 2
symmetric quadratic form in the generalized coordinate time derivatives, one finds:

N N
1 . logpo..
T= 5 E E m;j(q) §;q; = EqTMq (3.40)

i=1 j=1

Note that q is an N x 1 configuration vector of generalized coordinates. It is
convenient (and important) to collect the mass matrix M = M(q) before the
differentiations implied by Lagrange’s equations are carried out; this simple point
seems to elude many individuals when symbolic codes are written to automate
derivation of equations of motion. Including the possibility of Pfaffian nonholonomic
constraints, the equations of motion follow from Eqgs. (3.37) as the following N+m -
system of differential and algebraic equations:
- av T .
Mq+G+$=Q+A A, Aq+ao=0 (3.41)

where -g—h’ is the N x 1 vector gradient of the potential energy function, and

G = G(q,q) is the N x 1 vector:

—eTeWy ... oTaMyar @ _ 1 (0m;  Omy  Om;
G [q C q q C QJ ’ cjk - 2 (aQR + aql aQi (3'42)

and where the last equation that generates the typical element c},“) of the NxN
symmetric matrix C® = C((q) is the Christoffel operator.

It is apparent that deriving the equations of motion, for natural systems subject
to Pfaffian nonholonomic constraints, has been reduced to formation of the kinetic
energy to identify the mass matrix, then carrying out the indicated gradient
operations in Eqs. (3.42), (3.43) on the mass matrix elements m;, and the potential
energy to form the vectors G = G(q, q) and 6V /dq.

For the case that the nonconservative forces are generated by an m. x 1 vector
u of control inputs, we have Q = Bu and Egs. (3.41) assume the following form

M(q)3 + 5§ +G(a.d) =Bu+4(q)"A

A(q)q +2.(q) =0 (3.43)

3
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In order to appreciate some of the issues of cooperation associated with control
design for redundantly actuated systems, we consider a specific example in the
following discussion.

3.5.2 A Prototype Cooperative Control Example
Equations of Motion

Consider the pair of robot arms shown in Figure 3.1. We assume four active joints;
namely, the shoulder and elbow joints on the left and right robots, for simplicity;
the wrist torques are neglected. The objective is to design a feedback controller to
command the four torques so as to stabilize the payload with respect to a prescribed
trajectory of the payload moving from an arbitrary reachable State A to an arbitrary
reachable State B. It is desired that the control law have the following attributes:

1. Accommodate an arbitrary feasible reference trajectory.

. Be of a simple feedforward/output output error feedback form.

2
3. Guarantee global asymptotic stability, including nonlinear kinematics.
4

. Handoff smoothly between large trajectory-tracking motion and terminal error
suppression, without gain scheduling.

‘We present a control strategy possessing these four desirable attributes.

"Under the assumption that each manipulator is composed of two rigid links, that
the payload is arigid body, and that the entire system undergoes only planar motion,
but retaining all nonlinear kinematic effects, the kinetic energy of the system has
the natural form

T =14"M(q)lq
(3.44)
= 34T Mr(qu)lar + 1aE[Mr(ar)lar + 3aF [Mp(ap)lar

where the configuration coordinate vector naturally partitions into Ieft(L) right(R),
and payload(P) configuration coordinate subsets as

_J 6 _f O _ 0
qL = 92 sy QR = 85 y QP = ZLes ]

yc;

qL ' T
=9 ar ¢={g, 6, 105 65 165 zey ve,)
qr

The 7 x 7 system mass matrix has the block diagonal structure

M
M(q) = [ Mg ] (3.45)
Mp
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(3.5
Payload (P} — (zp.yp)
i

(a) Configuration Sketch () Substructure Systems and Notation

(c) Laboratory Experiment at the Naval Postgraduate School

Figure 3.1. Cooperative control multibody manipulator experiment
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where, introducing the elbow angles 8;; = ; — 6;, the substructure mass matrices
are compactly written as

_[n+ im i+ m,l? %mzlxlzcosgn

M= [ %mglllgcos&z I+ %mZIg (346)
_ Is+ %mslg + m41§ %m41514CO$955

Mg = [ %m41514C05955 ILi+ ‘:‘m412 (347)

and

I3
Mp = [ ma ] (3.48)
m3

The equations of motion follow in the form of Eq. (3 .43), where, using Eq. (3.42),
the nonlinear vector G(q, q) has the following specific form

‘ —m263l; Iy sinbyz

GL m29¥l1123in812
Glad=1{Gu {gL } - _;_ et (3.49)

0 R —m4Q§I4lssin955

. m49§I4lssin055

The control vector (containing the four shoulder and elbow torques) is

u={u; uz ug us}T . (3.50)
and, using the virtual work principle, we can establish that the control influence
matrices are

iB. O . 1 -1
B=|0 Brl|, BL=Br= [0 1] (3.51)
O O

Upon taking the origin for an (x,y) coordinate system as the base hinge point of

" the left arm, and letting the x axis pass through the base hinge point of the right

arm, the geometric constraints arising from pinning of the left and right robot wrists
to the payload at points Q and P are captured by the four holonomic constraints:

lycos8; + lacosfs + Llzcoss — z., =0

l;sinfy + lsinf; + zl3sinf; — Yes =0 (3 52)
IscosOs + lgcosfs — Llzcos83 —z.; — D =0 )
lssinfg + lysinfs — 513551193 - y;,‘ =0

Upon differentiation with respect to time, Eqgs. (3.52) yield a kinematic constraint
of the Pffafian form [the second equation of Eqgs. (3.43)], with ap = 0 and with

—lisind; lysind, 0 0 - % I3sinf; -1 0
_ | licosfy  lycosd; 0 0 1 l5c0s83 0 -1 :
A(q) - 0 0 —lssiﬂ96 —l4sin85 2 l3sin83 -1 0 (353)
0 0 lscosﬁs l4CO$95 - -;- I3C0393 0 —,1
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and also, for subsequent use, we record the time derivative of A as’

A(qr q)

~li61cos8; —ly62c0s8; 0 0 ~Llsfscosf; 0 0
—l,6,sin8; —lyf,sind, 0 0 —1labssind; 0 0 (3.54)
0 0 —lsfscosfs —libscosts %Iaﬂscos& 0 o]

0 0 —lsfesinds —lyfssinds Llsfasinés 0 0

Now, solving the first of Egs. (3.43) and Eq. (3.39) simultaneously for the
generalized constraint force Q¢ = ATA and Mg, we obtain

Qc = ATA = F; 4+ Fau
F; = AT(AM-1AT)-}(G-Ag) (3.55)
F2 - —AT(AM-lAT)-IAM"IB

and - =
M3+ G=Bu
G =G - AT(AM-1AT)™} {AM"'G - Aé} (3.56)
B=[1- AT(AM™AT) " 'AM] B

It is natural to introduce the consistent partitions

My b c:;l- - 1:3"
M= Mg , G= Gr (. B=| Bg (3.57)
Mp Gp Bp

and rewrite the first of Eqs (3.56) as three equations

MLaL + Gi(e,d) = Br(q,d)u .

MRrdr + Gr(q.4) = Br(q,q)u (3.58)

Mpdr + Gr(q,9) = Bp(q,q)u
This constraint-free form of the equations of motion implicitly reflects the con-
straints; the third of Eqs. (3.58) is sufficient to describe the dynamics of the system,
since all other coordinates can be determined as a function of (qp, gp) through use
of the constraint equations.

Prior to discussion of control law design approaches, it is useful to consider the
inverse kinematics problem: Given a smooth desired (prescribed) payload motion
qp(t), determine feasible/desirable corresponding control inputs. Inverse kinematics
for the case of redundant coordinates involves some subtle issues which are captured
in the following sections.

Inverse Kinematics

Notice that the four holonomic constraints of Egs. (3.52) reduce the number of
degrees of freedom from seven to three. Thus, in principle, we could derive all co-
ordinates and their time derivatives history from a given trajectory of the payload
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coordinates qp(t) = [0a(t) ze,(t) y;,(t)]T. Obviously, if we know all of the coordi-
nates and their first two time derivatives, then the differential equations of motion
[Eqgs. (3.56) or (3.58)] can be considered algebraic equations for determination of
the corresponding control torques. Since there are only three degrees of freedom
and four control torques, there is obviously an issue of uniqueness, and it is through
the expolitation of the lack of uniqueness that we can seek an optimal control by
which the robot arms may cooperate in carrying out the controlled maneuver. It is
also important to anticipate geometric singularities on the boundary of the reach-
able region (the maximum feasible workspace). First let us consider some geometric
issues. .

With reference to Figure 3.1, observe that a given motion gp(t) of the payload
dictates the motion of points P and Q though the four geometric formulas:

TQ = Zey — (!.}) cosfs
= — (&) sind

¥Q = Yes s (3.59)

Tp = Ty + (-.}) cosfs

YP = Yes T+ (!21) sinfs -
and obviously, the companion equations can be obtained to determine the first two
time derivatives of the grapple point coordinates (zp,yp,ZqQ,¥Q) as a function of
the payload motion

(93 1Zes ,y¢, aé3 ﬂ.:c; 1g¢3 163 15C; 1§¢,)

These straightforward equations are not recorded for the sake of brevity. However,
given the payload motion, we can obviously determine the grapple point’s velocity
and acceleration coordinates

(2p.9P,2Q:9Q,2P,¥P,2Q:¥Q)

by differentiation of Egs. (3.59). We consider how to determine the motion of the
left and right robot arms. Considering the geometry of the left robot arm, from
Figure 3.1, it is evident that the left shoulder and elbow angles 6; and 6 are related
to the instantaneous position of the grapple point (zq,¥q) by

6, B+ Bar

fir = tan(yg/zq)
3.3 2 2 41/2
Bar = cos1 {2 zz:;(::.l.éy)x); ) , two, roots, take for >0 (3.60)
_ ~1 [ yq-lising C
62 = tan zq -l::‘aw:)

Similarily, considering the right robot, it is evident that the right robot angles 65
and 05 are related to (zp,yp) by
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66 = Pir—P2r
fin = tan” (y;;/z,p)( 2452)2
-1 [ B-Lit{zpty 3.61)
= 1 rF tworoots, take for > 0 (
ﬂ;n cos 21.[(D—:p)’+y", :/:) ’ ) ﬁ?R
- —~158ind
85 = ian ! D—’i:p-;::ﬂl‘.s

It can be verified taking Bor and Pyr positive corresponds to the “elbows out”
configuration shown in Figure 3.1. Obviously, the “elbows in” configuration results
from choosing the negative signs for f2r and fzr, and two other asymmetric con-
figurations are possible if opposite signs are selected. The lack of uniqueness is a
consequence of redundancy and the choice of control modes is dictated by practi-
cal configurations. Except near certain singular configurations discussed below, it is
possible to manipulate smoothly through an infinite family of neighboring configura-
tions for any one of the four choices on signs for for(t) and far(t). Straightforward
differentiation yields the following kinematic equations which determine the first
two time derivatives of the left and right shoulder and elbow angles:

{atm{i) {E}=l2) 3
{(Elem{ir} {E}=wl(5}-a{%]]

where we have introduced the matrices

(3.63)

A = —I1sin91 —Izsinaz Ar = —lssinas —l4sin95
L =1 licosf; lycosb; |® T | lscos8s  l4cosfs

It is easy to verify that the above matrices are singular if §; = 6,, and 8¢ = 6s,
respectively. It is obvious that these singularities corresponded to the left and right
arms being fully extended, and it is clear that these boundaries of the workspace are
to be avoided [the reachable set of points interior to the workspace must be taken
into account in the trajectory planning for the payload, leading to the nominal
trajectory qp(t) of the payload].

Cooperative Actuation

Given the inverse kinematic solution for all system coordinates and time derivatives,
as a function of a prescribed payload trajectory qp(t), the cooresponding control
torque vector u(t) is not unique, for the case of more actuators and degrees of
freedom. In our particular example, since we have four actuators and three degrees
of freedom, we expect an infinity of torque vectors for the nominal maneuver. As
in the case of human beings jointly manipulating a heavy object, we desire to

289




Sec. 3.5. Cooperative Control of Multibody Manipulators 137

exploit the redundancy of actuation to cooperate in the sense that large, nonworking

constraint forces are avoided. A
To capture these considerations asa control strategy, we introduce the following

cooperation criterion to be minimized

J= %uTwuu-l" '12'QcTW¢Qc (3.64)

subject to satisfying the third of Eqs. (3.58). Notice that the weight matrix selection
permits us the flexibility of emphasizing small torques (u), or small constraint forces
Q.= AT)), or a compromise between these two competing objectives. Using the
Lagrange multiplier rule, we introduce the m x 1 Lagrange multiplier vector 7 and
the augmented function J, and use Egs. (3.55), (3.58) to write

j= %uTWuu+ %(1&‘1 + Fou) W (Fy + Fou) + 17 (Mpc'm +Gp - f’:pu) (3.65)

Requiring that the gradients VuJ and V,J both vanish as a necessary condition
for minimizing J leads to the solution

u = H {Bp-, - F;fwcrl}
v = (BeE 1‘3;)-1 {Mpip +Gp + BpE F;fwcn} (3.66)
"H = (Wu+FIWF2) ™ -
Some simple calculations with example payload motions reveal the utility of this
formulation of the inverse kinematics and cooperative actuation strategy.
An Example Nominal Payload Trajectory

Perhaps the simplest and easiest-to-motivate scheme for prescribing a nominal
motion qp(t) for the payload is to adopt a smooth polynomial spline from the
initial state gp(to) to the target final state qp(ty) of the form

t—1o

ae(®) = F(){ae(ty) - arlta)} + aplte), 7= (20
ae(t) = f(){arty) - aelta)}, f(7)= T i, (3:67)
ae(t) = f(r)ar(ty) —aelte)}, ()= g 2ap st

where we choose the particular shape function

o

f(r) = (10 - 157 + 67%)
4L = 2(30 — 607 + 307?) (3.68)
£4 = 7(60 — 1807 +1207?)

This trajectory can be shown to be optimal for the idealized case where we
consider only the payload trajectory and the vector sums (F, M)of the forces
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and moments applied to the payload, without regard to how these are generated;
Egs. (3.67), (3.68) can be shown [Junkins and Turner 1986] to simultaneously
minimize the translational and rotational jerk integrals

2 B L2 SN
J1=/ FTFdt, and Jz:/ MTMdt
to

subject to satisfaction of the third of Eqs: (3.58), and the boundary conditions:

ap(to) = specified initial position

QP?O; =0

apr(te) =0

qp (ty) = specified final position (3.69)
Qe (t) =0

ar(ty)=0

Since the idealized optimal trajectory [Egs. (3.67), (3.68)] does not explicitly
consider workspace constraints, this nominal motion must be checked to make sure
it remains feasible throughout the motion, and of course, optimality with respect
to the entire systems dynamics and minimization of other performance measures
cannot be claimed. These smooth, easy-to-compute, motions usually represent
excellent starting solutions, however, and we elect to use this family of solutions
to generate the nominal trajectories throughout the remainder of this chapter. A
typical example motion of the system is shown in Figure 3.2.

A Lyapunov Stable Tracking Control Law

A smooth nominal (reference) trajectory for the entire system can be computed
using Egs. (3.67), (3.68), and via inverse kinematics, the left and right robot joint
coordinates are determined from Egs. (3.59)—(3.62), while the nominal (cooperative)
shoulder and elbow torques are determined from Egs. (3.66). This is 2 for-
example way to determine the reference trajectory, and can be replaced by a more
appropriate path-planning method in particular applications. However the reference
trajectory satisfying the boundary conditions of Eqgs. (3.69) is determined, we denote
all state and control variables along the reference trajectory with a subscript ref.
Of course, in actual applications, we can expect that the system will not follow the
reference trajectory qrer(t) exactly when we command the control urer(t), due to
model errors, external disturbances, and nonideal actuation. We seek a perturbation
$u = function(éq(t), §q(t)) which will guarantee that an intitally disturbed motion
will asymptotically return to the reference trajectory in the absence of model or
implementation errors. Actually, it is preferable that the control perturbation §u
is in output feedback form where it depends only upon a measurable subset of the
coordinates and their time derivatives.

In view of the four kinematic constraints, we know that a minimal coor-
dinate description requires only three generalized coordinates. ‘By considering
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the Payload

torque u;
(-]

b
S

0 2 4 6 8 t[s] 0 2 4 6 8 10t

Figure 3.2. Nominal maneuver, payload rotation, and actuator torque trajectories

(g, 4) to be functions of (qp, qp), in the third of Egs. (3.58), we are motivated to
investigate the kinetic energy

1. .
Tp = 5‘1'II;MPQP (3.70)
and observe that . . .
; Tp = ¢f Bpu - (3.71)

This motivates the Lyapunov function
) I . 1
U= §5ngp6qp + §6qu16qp (3.72)

where §qp = qp — Qp((t). For the simplest case that qp.((t) = constant, then it
is easy to verify that the Lyapunov function derivative is

U =648 [Beu+ K16qp] | (3.73)
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and selecting the bracketed term to equal —K16qp (so that U is never positive), we
are led to the global stability condition

Bpu = —[K;6qp + K264p] (3.14)

Since Bp is a 3 x 4 matrix, it is evident that u is underdetermined and we are
free to introduce an optimization criterion to select a particular control satisfying
Eq. (3.74). One attractive possibility is to minimize uTu; this gives the minimum
actuator torque controller

- - w1
u=—BT (Bp Bg) [K18qp + K26dp] (3.75)

For the trajectory tracking case, in which we desire to stabilize the motion
with respect to a prescribed reference motion, the situation is more complicated.
Suppose that the reference trajectory qp.(t) and an associated control upe(t) are
determined consistent with the system dynamics [for example, using Eqs. (3.59)-
(3.69)). Then it follows that the payload dynamics at every instant on the actual
and reference trajectories satisfy

Mpgp + Gp =Bpu _
MPN( apuf + Gpn! = BPMuuf

and it also follows that the Lyapunov function [Eq. (3.72)] has the time derivative

(3.76)

U = 64F [Bpu~ Be,.u,., + Ki6ap — 6Gp — 6Mp,  dp.., + Mpsqp] (3.77)

Setting the bracketed term to —K284p gives the stabilizing control condition

Bpu = Bp,u,. — [Ki8qp + K265} + [sc‘;p +8Mp, dp,, — Mpaqp] (3.78)

and for the case of minimum control torque, a particular solution of Eq. (3.78) gives
the nonlinear feedback law

u=BF(BeBE) " {Brurt,. — [Kibap +Kabis)

i ; 3.79
+ [6Ge + M, 3p,.. ~ Mpode] } G
This law, while guara.nteemg stability (neglecting model errors), is cumbersome
to lmplement due to the detailed computation required to produce all of the
nonlinear terms. Note that the payload coordinates qp = [f3 xc3 ¥c3)T may not
be directly measurable. For example, assume that the measurable quantities are
= [61 6] and qr = [fs 65]T, and the time derivaties thereof; then it is easy
t.o verify from geometry that the payload coordinates are computable as follows
6 = tan [18528] = gt [ flintetinn=tiuintytuints)
? L(zq+2p) = ?[(D + Iscosfs + Licoss) + (Iycosty + lpcosh;)]  (3-80)
s(vq+wp)= 3[(Issinfs + lysinds) + (I sind, + l3sinb,)]

YY)
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and the time derivative qp = [0}, Xes ¥es]T follows from differentiation of
Eq. (3.80).

As an alternative to the above developments, and to obtain a direct output error
feedback form for the control law, we can observe the following kinenatic form for
the work rate of the control torques

o T
T= ulél + u2é2 + ughe + usfs = { :; } u= ‘.I'I.I.‘“L + t‘l’g_ug_ (3.81)
and it is obvious by inspection that setting up = —Karqr, ugr = —K2rgr will

decréase T for all nonzero motion of the system. This energy dissipative control
suggests the following output error feedback law for controlling the departure motion
relative to the reference trajectory

u=u,_(t) - {K, ( g:‘; ) +K2 ( gg’; )} (3.82)

Ki O

0 Kirj .

It can be verified that the control law of Eq. (3.82) is guaranteed to be globally

stabilizing only for the case that qrer = constant. While global asymptitic stability
is not guaranteed during the time interval {to < t < g}, it is guaranteed during
the interval {t > t;}, for all reference maneuvers satisfying the boundary conditions
of Eq. (3.69). These developments can be better appreciated in the light of some
illustrative numerical examples, as provided in the next section.

where the 4 x 4 positive definite gain matrices have the structure K; =

Cooperative Control: A Numerical Example

To illustrate the above discussion, we consider each link of the robots to be 1 m
long and to have a mass of 1 kg. The distance D between the shoulder joints is
taken as 0.75 m, and the nominal initial and desired target values of five angles are
listed in Table 3.1. The inverse kinematic process of Egs. (3.59)~(3.69) was used
to compute the solution shown in Figure 3.2. All the intial conditions were then
perturbed by moderately large angles (order of 10°), and the feedback control law
of Eq. (3.82) was used.

A typical controlled response from large inital disturbances is shown in Fig-
ure 3.3. Notice that the order of 10° initial errors are less than 0.5° by the nominal
final time of 10 s; however, a few more seconds of terminal control are required to ef-
fectively null the errors. The weight matrices [in Eq. (3.64)] were Wy =1, We = 0,
and the control gains [in Eq. (3.82)] were K; = 0.5, Kz = 0.2I; these affect the
controlled response, however we found a large family of feasible values. From eval-
uating the response using several other intitial conditions and variations in the
selections of the control gains and weight matrices, we confirmed that a wide range
of choices give excellent tracking stability over 2 large domain of intital conditon
errors. Thus the control law of Eq. (3.82) seems to be an attractive candidate for
practical applications. :
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Table 3.1. Initial and final angles for the nominal maneuver

01[deg]  62[deg] 6a[deg) Os[deg) Os[deg]  timels]
initial: 121.0430 40.0323 00.0000 58.9570 139.9677 0
target: 137.2041 -10.3342 90.0000 117.3017 142.3095 10

The above results have been extended to more general multilink configurations,
including base motion, and they have beeen successfully validated in an experimen-
tal study [Yale 1993], including consideration of the case of the robot arms mounted
on a movable base.

Controlled Maneuver
(large initial errors)

V) ) S re} vy rvy as 1

X(m)
-, g‘
.; P —--ela am
, 06 5
v ea g
-&N° o
60 Controled Response S
of Angular Motlon Tl
0° '
.
0 4 8 12 16 2 t[s) o 4 8 12 1 20 t[s)

Figure 3.3. Controlled response from disturbed initial conditions
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3.6 DYNAMICS, STABILITY, AND CONTROL
OF A DISTRIBUTED PARAMETER SYSTEM

In Figure 3.4 we consider control of a rigid hub with four cantilevered flexible
appendages. We consider the appendages to be identical uniform flexible beams
and make the Euler-Bernoulli assumptions of negligible shear deformation and
distributed rotary inertia. Each beam is cantilevered rigidly to the hub and has
a finite tip mass. Motion is restricted to the horizontal plane and, control torque
u(t) acting on the hub is the only external effect considered.

We are interested in a class of rest-to-rest maneuvers, and under the previously
mentioned assumptions, we can show that the beams will deform in the antisym-
metric fashion (Figure 3.4), witk the configuration’s instantaneous mass center re-
maining at the hub’s geometric center. Also, because of the assumed antisymmetric
deformation of the beams, in this section we need to concern ourselves only with
the deformation y(x, t) of a single beam. We subsequently relax this restriction, to
permit more general kinematic assumptions and the analysis that flows form it. We
adopt the continuum viewpoint and avoid introducing spatial approximations in the
application of Lyapunov stability concepts; the resulting control law and stability
arguments will therefore apply rigorously to the distributed parameter system. The
hybrid system of ordinary and partial differential equations governing the dynamics
of this system is readily obtained from Hamilton’s principle to be [Junkins 1993]

Ihub:—:g‘ = u-+ 4(Mo - SoLo)
2 3 2 2
~Mo=Soko) = fp: px(5F +x8f)ax+ me (L4 + 5] ) + BOT

(5 +x$) + EIfg=0+ HOT

(3.83)
where

p = assumed constant mass/unit length of the beams

El = assumed constant bending stiffness of the beams

(Mo,So) = bending moment and shear force at the root of the beam

6 = hub inertial rotation

m; = mass of the tip mass

(L,Lo) = distance from the hub center to the beam tip and the hub radius

In Eq. (3.83), we denote higher-order terms by HOT to indicate other known linear
and nonlinear effects (such as rotational stiffening, and shear deformation). The
most fundamental developments do not consider these higher-order effects; however,
we selectively discuss the generalizations that accommodate these effects as well. of
course, in general, there are unknown model errors and disturbances as well, and a
practical control scheme must be stable in the presence of reasonable model errors.
The boundary conditions on Eqs. (3.83) are:
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Figure 3.4. Texas A&M flexible structure maneuver experiment

at x=Lo: 1yt Lo)= %{- L= 0 (clamped beam geometric B.C.s)

2
at x=L: %;{-L =0 (moment) (3.84)
3 2
2rl, = (1804 83],) o

The total energy of the system (constant in the absence of control or distur-
bances) is

2E = Tous (2) +4[ JEo(% +x28) ax

. 2 (3.85)
+JL, E1(3) dx+ mz(L%%+ % L) ]
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Motivated by results published in the recent literature (Refs. 3-5,19,21,22),
we investigate the following weighted energy function as a candidate Lyapunov
function:

2U = allh.,bé"' +az(8 — 9])2
2 2 . . 2 3.86
+4a3 [f,f‘o p(§+xb) ax+ [ E1(5%) dx -+ mq (L6 + g{ll_) ] (3.86)
where the positive weighting coefficients a; are included to allow relative emphasis

on the three contributors to the “error emergy” of the system. Note that this
is one of many possible ways to weight the mechanical system error energy, and

merely provides one illustration of an approach. It is physically reasonable to .

consider placing relative emphasis upon dissipating subsets of mechanical energy
as a control strategy, because some energy subsets are obviously more degrading of
system performance objectives than others in practical applications. Since 8 does
not appear in the total mechanical energy of Eq. (3.85), the total energy of Eq. (3.85)
is only positive semidefinite. We have added the positive “torsional spring energy”
term a;(8 — 67)? in Eq.(3.86) as a pseudoenergy to make the target final state

dy(x,t)

(o,é, y(xr t)! T = (0110’0!0)

) desired
be the global minimum of U. It is obvious by inspection that imposing @¢; > 0 in
Eq. (3.86) guarantees that U > 0 and that indeed the global minimum of U = 0
occurs only at the desired state (we wish to begin at rest and rotate to a new
angular position § = §;, suppressing vibration enroute and returning to zero flexural
deformation in the final position). Differentiation of Eq. (3.86), substitution of the

equations of motion [Egs. (3.83) and (3.84)], and considerable calculus leads to the
weighted power

. d )
U= -aq =6 [alu + ag(e - 0/) + 4(03 - 01)(LoSa - Mo)] (3.87)

Since we require that U < 0 to guarantee stability, we set the term in brackets to
—a4f, and this leads to the control law

u= -:}1- a2(0 —6y) +asf + 4(a3 — a1)(LoSo - MO)] (3.88)

In [Oh 1992], we developed a shortcut based upon the work/energy rate method
that avoids most of the algebra and calculus required to establish the weighted

power expressions like Eq. (3.87), we could make use of this idea here to arrive
more efficiently at Eq. (3.87).

From Eqs. (3.87) and (3.88), and considering all possible values for the a;, we see .

that the following linear, spatially discrete output feedback law globally stabilizes
this distributed-parameter system:
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u= ‘-[91(9 —4y) + 920 + g3(LoSo — Mo)];

. (3.89)
g1>0, 9220, g3>—4  forstability

This control law is elegant. Notice that the rigorous stability proof does not depend
on introducing spatial discretization methods such as the finite element method.
Furthermore, we have verified from root locus calculations that the gain stability
boundaries are apparently exact in this case (to 10 digits for the first 10 eigenvalues).
Of important practical consequence, notice that controllers based on this law of
Eq. (3.89) are easy to implement since no state estimation is required. The root
shear and bending moment can be measured by using conventional strain gauges.
The value and sign of the shear/moment feedback gain g3 = 4(a3 — a1)/a; depends
on whether we wish to emphasize dissipation of the beam vibration energy (for
as > ay) or the energy of hub motion (for as < ay), as is evident from Eq. (3.86).

Since U = —a46? is not an explicit, negative definite function of the subset of
state variables

dy(x,t)

oyt 5]

the stability arguments implicitly depend on the truth that all infinity of the
antisymmetric modes of motion of this structure, have generally nonzero hub angular
velocity (6). Note under the kinematic assumptions leading to Eqs. (3.83),
only antisymmetric modes are present, and no nontrivial motion can exist while
the hub angular velocity vanishes identically for finite time intervals. A more
elegant proof of global asymptotic stability using the feedback law of Eq. (3.89)
can be done by applying Theorem 3.9. This has been carried to completion
in [Mukherjee 1992], including consideration of the cases in which we relax the
antisymmetric deformation assumption applied in deriving Eqs. (3.83), thereby
admitting a richer and more general set of motions (the four beams are described
by four distinct functions of space and time, and there are now four PDEs and one
hybrid differential/integral equation). For this more general configuration, it can
be shown that a single hub actuator cannot provide rigorous asymptotic stability,
because only an antisymmetric subset of the modes are controllable by a hub
actuator (physically/qualitatively, the uncontrollable modes have identical adjacent
beams moving in opposition, which results in equal and opposite root moments and,
because of this cancellation, zero hub motion). For rest-to-rest maneuvers, however,
only the antisymmetric modes considered here are disturbable (by a hub torque
actuator), and they are also controllable. Thus, for the assumptions/constraints
imposed in deriving the differential equation model developed above, the control
law of Eq. (3.89) is globally stabilizing.

It is significant that this same linear feedback law of Eq. (3.89) maintains
its globally stabilizing character even when the Euler-Bernoulli assumptions are
relaxed to include the most common additional linear and nonlinear effects. In
particular, we have verified that closed-loop stability is maintained when we include
the following: rotational stiffening, Coriolis kinematic coupling terms, aerodynamic
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drag, shear deformation, beam rotary inertia, and finite inertia of the tip mass.
The verification of these truths requires appropriate modifications of the kinetic
and potential energy functions and, of course, the differential equations of motion
must be generalized consistently. In particular, U = —a46? can vanish only if the
conditions 8 = 0, 8 = 0 can be encountered at some point other than U=0 (the
target state), so the nonlinear proof proceeds directly from the closed-loop system
differential equations by showing that the condition 6 = 8 = 0 occurs only at the
desired equilibrium: ,

(0,5.y(x,t).ay—g;‘9-) derived = (64,0,0,0)

In short, global stability of the system using the simple linear output feedback control
law of Eq. (3.89) has been found to be very forgiving of the usual variations in
modeling assumptions and, therefore, modeling errors. In this section, an indirect
method of Lyapunov for analyzing the motion of a2 nonlinear system near the
equilibrium state has been presented, and also a method for generating globally
stabilizing feedback control law for distributed-parameter structural systems has
been discussed as an important application of Lyapunov direct method.

We have discussed the vibration suppression problem of the hub-appendage
configuration in the previous sections. As discussed above, the constant gain linear
feedback control law works poorly if we try to use the same constant gains for
both large angular motions and for small terminal motions. This is because the
large gains required for effective vibration suppression and disturbance rejection
to accurately isolate the target state are typically several orders of magnitude too
large for the en-route portion of the maneuver (i.e., the large gains appropriate for.
vibration suppression, when used during a large-angle maneuver, typically result
in significant 8 overshoots and, often, actuator saturation). Also, the large initial
torque command typically introduces 2 large vibratory transient into highly flexible
structures. From a qualitative point of view, if we wish to maneuver a highly
fiexible structure while suppressing vibration, then it is unlikely that we should
initiate this process by hitting the structure with a large hammer! To obtain a
control law more appropriate for near-minimum-time large-angle maneuvers with
vibration suppression, stable tracking-type feedback control laws discussed in this
section can be applied.

Consider briefly the near-minimum-time maneuver of a rigid body. We know
that the strict minimum-time control is a bang-bang law which, for the rest-
to-rest maneuver-to-the origin case, saturates negatively during the first half of
the maneuver and positively during the last half of the maneuver [Junkins 1986,
1991, 1993], [Meirovitch 1987}, (Singh 1989}, [Breakwell 1981}, [Slotine 1991}, [Van-
derVelde 1983]. From an implementation point of view, the instantaneous switches
of the bang-bang law are sometimes troublesome because (1) no torque-generating
device exists that can switch instantaneously; (2) when generalized and applied to
a flexible structure, the bang-bang class of controls excite poorly modeled
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higher modes; and (3) the switch times (and, therefore, the dynamics of the actual
system) are usually very sensitive to modeling errors.

An attractive family of parameterized sharpness approximations of the switch
function has been introduced to modify the admissible controls in near-minirnum-
time control formulations. The approximation presented in [Thompson 1989] and
[Byers 1990}, involves transcendental functions, but recent analytical/experimental
work [Junkins 1991, 1993] indicates that a much simpler piecewise continuous spline
approximation of the switching function is attractive from an implementation point
of view. Using this approach, a typical near-minimum-time control law (for single
axis, rest-to-rest maneuver of a rigid body) has the form

10 = u = Humacf(AL, t, £) (3.90)

where t¢ is the maneuver time and & = At/t;. We choose the (+) sign if 6; > 6,.
As a torque shaping function, we adopt the smooth sign function approximation

f(at, b, t):

’(Z‘-t)z[s—z(Ait)], for 0 <t < At
1, forAtStﬁ%-At.—:—t;

e
-1 25 vS - =13

._1+( t)[3_2(‘:\:3)], for ts St <t

Adopting the positive sign, Eq. (3.90) integrates to yield

6(t) =00+ %= [ f(at, tf,-r)d-r (3.91a)
o(t) = eo+(t—to)eo + B 0 [T f(AL, b, 2)dradny (3.91b)

The mtegratxons in Egs. (3.91) can be carried out in terms of elementary
functions, which are not presented here for the sake of brev1ty, the results of these
integrations give Eqgs. (3.93), (3.94) below. Figure 3.5 shows a maneuver resulting
from these integrations for a typical selection of parameters (@ = 0.25, Umax = 400
oz-in.), and 2 40° rest-to-rest maneuver of a rigid approximation of the structure
in Figure 3.4 and Table 3.2. For rest-to-rest maneuvers, we impose the boundary
conditions:

atto=0: 6(0)=6, 6(0)=0
at timete: O(t)=6;, 6(t)=0

and upon carrying out the integrations implied in Eq. (3.91), we obtain the useful
relationship

(392)
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Table 3.2. Texas A&M maneuverable flexible structure: configuration parameters

Total undeformed system inertia, I 2128, oz-s*-in.
Hub radius, Lo 5.5470, in.
Hub center to tip mass, L 51.07, in.
Tip mass, m 0.15627, oz-s2/in.
Appendage modules of elasticity, E 161.6x10%, oz/in.2
Inertia of bending section, I~ 0.000813, in.*
Mass density of appendage/length, p 0.003007, oz-s2/in.2
o [d 2
@ (deg/sec)
10
0 Pt
G&
O [deg/seq)
10
%0 i3 tmetfsec] ig
0 tdez1 o
40
o) :
0 3 timet[sec] 9?

Figure 3.5. Torque-shaped rigid body maneuver
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0y —6p = (P—mlﬁ) [:]1; - %a - -]%azl t2, At = atq, 0<a< % (%_93)
= 1(6; — 6o) ?
te = {um“[(llti) - (1/2)a+ (1/10)0,2]} (3.94)

In Eq. (3.94), we see the explicit tradeoff between torque shaping «, target
maneuver time t;, maneuver angle ¢ — 6y, and maximum angular acceleration
Umax/I. Obviously, Eq. (3.93) can be inverted for any of these as a function of
the remaining parameters. If we set @ = At/ty = 0, of course, we obtain the
well known special case result expressing the relationship between the minimum
time, maneuver angle, inertia, and saturation torque for bang-bang control. It

. is obvious that selection of a controls the sharpness of the switches, with @ = 0

corresponding to bang-bang control (instantaneous switches) and a = 0.25 being
the smoothest member of this family of torque-shaped maneuvers. Figure 3.6 shows
the rigid body maneuver time t¢ vs @, from Eq. (3.94), whereas Figure 3.7 shows the
residual total energy (at time t¢) when the torque-command urer = Umaxf(atr, te, t)
is applied to simulate the flexible body response [first six modes from a discrete
assumed mode model (Chapter 4 of [Junkins 1993] of order 20). Notice (Figure
3.7) that open-loop torque shaping reduces residual vibration at time tr by three
orders of magnitude (o = 0.1) with only a modest ten percent increase over the
theoretical minimum time rigid body maneuver (@ = 0). The preceding results
and [Junkins 1991, 1993], [Thompson 1989], [Vadali 1990}, and [VanderVelde 1990],
support the intuitively obvious truth that applying judiciously smoothed bang-bang
controls such as Eq. (3.90) to generate an open-loop maneuver of a flexible body
can result in near negligible structural vibration for sufficiently slow maneuvers
(small umax and large ) and neglecting disturbance torques. Of course, unmodeled
disturbances, control implementation errors, and model errors can be expected to
negate some of these apparent gains. However, sharper control switches obviously
increase the probability that higher frequency, less well modeled modes will be
excited and, therefore, robustness with respect to model errors is generally more
of an issue for bang-bang control than for smoother torque profiles. Even for
relatively small departures (slightly smoothed switches) from bang-bang control,
torque-shaped maneuvers of highly flexible structures typically enjoy a reduction of
several orders of magnitude in residual vibration. Thus, the overall maneuver time
(including terminal vibration suppression) can be reduced significantly by torque
shaping.

These observations suggest the following strategy: Use an optimized shaped-
input profile to establish a “trackable” a priori reference rigid (or reduced-order
flexible) body maneuver; then, based on real-time measurements of the actual flexi-
ble body’s departure from this smooth reference motion, superimpose a perturbation
feedback control on the reference shaped-torque history that stabilizes the depar-
ture motion from the reference motion. Also of significance, it is usually desirable
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to select the reference torque profile parameters (¢.g., Umax, @, etc.) to consider the
available sensor and actuator dynamics and thereby make the commanded torque
history more nearly achievable physically.

Pursuing this logic judiciously, attractive tracking-type feedback control laws
can be established for near-minimum-time, large angle maneuvers. Since bang-
bang flexible body controllers are sensitive to modeling and control implementation
errors, we seek control laws that are 2 smooth torque-shaped compromise between
the competing objectives of minimizing: (1) maneuver time, (2) residual vibration,
and (3) sensitivity of closed-loop performance measures with respect to model and
control implementation errors. . .

We adopt a reference rigid body maneuver {frer(t), Oret(t), ret(t) = urer/I}
satisfying Eqs. (3.90)-(3.94), where I is the undeformed moment of inertia of the
structure, and we have implicitly selected &, unax and computed the corresponding
tr from Eq. (3.94) for specified initial and final angles. For designing a globally
stable tracking controller, the candidate error energy Lyapunov function can be
established by considering Eq. (3.86) as

. .12
2 =0T 862 + az66 + 403{ S, p[63 + 6] ax
P ] , (3.95)
+ i E1(83%) dx -+ me[L66 + 63| | }

where §( ) = ( ) = ( ) and the ( ), quantities are evaluated along the open-loop
flexible body solution of Eqs. (3.83) with u(t) = uy(t). Considering Eqgs. (3.87)
and, the time derivative of U is given by
U= (8 - 0,){ @1U — a1Urer + a2(8 — 6;)
+4(a3 ~ 1)[(LoSo ~ Mo) — (LoSo — Mo)]}
Pursuing the objective of globally stable control, it is clear that setting the

[] term equal to -a4(6 — ;) leads to the following globally stabilizing [with
U = —a4(f — 6:)?] control law:

(3.96)

0= rer(t) = {8100 — ) + £2(6 - 6) + gal(LaSo — Mo) ~ (LaSo ~ Mo)]} (3.97)
.To enable easy implementations, the following structure for a tracking control law
can be hypothesized:

u= umf(t)—{gx(e—enf)+gz(é—énf)+g3[(1.oso — Mo) — (LoSo — Mo)mf]} (3.98)

where it is easy to show that the root moment for the special case of a reference
(rigid body) motion is proportional to the angular acceleration: '

(LoSo — Mo)rer = [P(L® — L3)/3 + meL?frec(t) (3.99)
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Obviously, the globally stabilizing control law of Eq. (3.97) is similar to the
conjectured law (for practical implementation) of Eq. (3.98), the difference being
that Eq. (3.98) requires presolution for the open-loop rigid body ( )rer quantities,
whereas, the globally stabilizing control law of Eq. (3.97) requires solution for
the open-loop flexible body ( ). quantities from the partial differential equations.
Since near-minimum-time control implies a certain urgency(!), it is obvious that the
negligible computational overhead of Eq. (3.98) is more attractive than Eq. (3.97)
from the point of view of real-time implementations. For the purpose of finding the
region possessing Lyapunov stability, substitute Eq. (3.98) into Eq. (3.96)

U=—a(6- é,){g,(a' ~6;) + [8180 + g286 + gaA(LoSo — Mo)]} (3.100)

The Lyapunov stability condition comes from requiring U of Eq. (3.100) to be
negative; a sufficient condition is

. . 1 .
0—-6|>p= g—2|g1Ao + 8208 + g3A(LoSo — Mo))| (3.101)

If the angular velocity tracking error |§ — 6;| éxceeds g, then U is negative and
apparently U decreases until encountering the region bounded by Eq. (3.101). It is
further apparent that the A quantities on the right side of Eq. (3.101) are finite and
(pre-)computable differences between open-loop flexible ( ) and rigid body ( )eer
motions. Thus, an upper bound g can be established directly by precomputation of
a family of two open-loop motions and the use of a particular set of feedback gains.
Equation (3.101) thus determines an angular velocity variable boundary defining
a region I' near the ( )rr motion. Note that large motions are globally attracted
to T' because U < 0 everywhere outside of this region. Thus, the control law
of Eq. (3.98) is almost globally stabilizing, and the only region where asymptotic
stability is not guaranteed is the small T' boundary layer region near the target
trajectory. Furthermore, the right side of Eq. (3.101) is essentially a measure of
how nearly the reference target trajectory satisfies the flexible body equations of
motion; a judicious choice of the shaping parameters defining the target trajectory
and the associated reference control input can usually be made to result in g (and
therefore I') being sufficiently small.

A bounded-input/bounded-output (BIBO) viewpoint of stability can be used
to establish some insight into the motion in the I' region. Departure motion
differential equations for §( ) = ( )—( ). quantities can be obtained by differencing
Eqgs. (3.83), driven by the control law of Eq. (3.98), from the rigid body equations of
motion, driven by uys. Upon formulating these equations, one can verify that the
departure motion is governed by a linear, otherwise asymptotically stable, system
of differential equations, forced by the known A terms that appear in Eq. (3.101).
The 6( ) motion in the T region is thus bounded because the A forcing terms -
are bounded; the finite maxima of these terms can be found by direct calculation.
The resulting departure motion is therefore bounded everywhere in the T region,
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which was already known to have a (typically small) finite dimension p. Since
the actual numerical bounds on the A and g quantities can be made arbitrarily
small (depending on how nearly the user-defined reference trajectory is made to
satisfy the open-loop equations of motion), we have a very elegant theoretical'and
practical situation vis-3-vis stability of the closed-loop tracking motion. We see
that the closed-loop motion is globally attracted to the controllably small I' region
near the target trajectory and, considering the motions within I, we have BIBO
stability. .

In this application, we use a torque-shaped rigid body reference trajectory, which
is very attractive since the reference maneuver can be calculated in closed form [such
as the family of Eqs. (3.90)-(3.96)] and since the ensuing tracking law performs
extremely well. Note that Eqgs. (3.90)-(3.96) have a C?! continuous transition to the
final fixed state:

{arer(®), Bee(8), Brer8), [Mo(®)lets IS0l Ol } = {0,07,0,0,0}, a5 t— 4

so that, for t > t¢, only the three feedback terms of Eqgs. (3.98) are contributing
to the terminal fine-pointing/vibration arrest control. Thus, the controls blend
continuously from the large-angle tracking law of Eq. (3.98) into a constant gain
controller (for t > tr) identical to the globally stable fixed point output feedback
case of Eq. (3.88). Thus we have unqualified global stability for t > t1.

Simulated Results for Large Angle Maneuvers

Returning to the family of 40° open-loop maneuvers used to generate the energy
surface of Figure 3.7, we computed the velocity tracking bound p for Lyapunov
stability [as given by Eq. (3.101)] and found the maximum value (gmax) of p(t)
along each trajectory. Figure 3.8 displays this worst-case tracking bound (maximum
value of y) surface pmax(@, Umax) region used to generate Figures 3.6 and 3.7. The
closed-loop tracking error bound has a roughly analogous behavior to the open-
loop residual vibration energy surface of Figure 3.7. Recall that, outside the region
bounded by the inequality of Eq. (3.81), we have guaranteed Lyapunov stability,
using the control law of Eq. (3.98) and the reference rigid-body torque given by
Eqgs. (3.90)-(3.94). From Figure 3.7, it is clear that sufficiently small gpmax and
large o result in arbitrarily small tracking errors, but the (small «, large umax)
near-bang reference maneuvers cannot be tracked as precisely. It is easy to see
how a subset of the candidate (@, unax) designs can be found that satisfy specified
inequalities on maneuver times, tracking errors, and residual vibration energy by
direct examination of the surfaces of Figures 3.6-3.9.

The results obtained from the simulations (and in the actual hardware imple-
mentations discussed later and in [Junkins 1991,1993]) support the conclusion that
these surfaces can be used to establish a large region of feasible designs for near-
minimum-time controls in the space of torque-shaped parameters and control gains. -
Optimization over the set of feasible designs should, in general, include considera-
tion of the nature of expected disturbances to be rejected. One detailed simulation
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is now considered to show state and control variable histories along a typical trajec-

tory of the family of trajectories underlying the above surfaces. In these simulations

the effects of worst-case disturbance torques are included in order to illustrate the
effectiveness of controls in the presence of unmodeled effects. For simplicity, only
the case of 40° rest-to-rest maneuver is considered here, along with setting umax=
400 oz-in. for all cases.

For the computational studies, two control laws are considered: namely, the
output feedback law (control law I) of Eq. (3.88), and the tracking-type feedback
control law (control law II) of Eq. (3.98). Although control law II could be used

'with an arbitrary reference trajectory, the torque-shaped rigid body trajectories of

Eqgs. (3.90)-(3.94) are specifically selected for investigation. The torque-shaped
open-loop control history urr can be precomputed (in a fraction of 2 second!)
from Egs. (3.90)—(3.94) and stored, whereas the instantaneous trajectory variables
{Bser, Bret, [LoSo(t) — Mo(t)]rer} are integrated easily in real time. Note that the
boundary conditions of Eqs. (3.92) are enforced by using Eq. (3.94) to compute the
trajectory maneuver time as a function of the maneuver angle, saturation torque,
and torque-shaped parameter.

We now discuss the simulation results using control law II, which obviously
blends into control law I in the end game (for t > t¢). In the experimental results in
the subsequent discussion, maneuvers carried out by both control laws are reported.
Both open-loop (all g; = 0) and closed-loop time histories of selected state variables
are shown in Figures 3.9 and 3.10.

Figures 3.9(a) and (b) show the hub angle and a.ngular velocity for the case of an
open-loop control and in the presence of substantial impulsive and quasirandom (5
oz-in., 1o) disturbance torques. It is evident that the disturbance torque history is
very significant vis-a-vis disturbing flexible dynamics in our experimental hardware;

" however, certain nonrandom, nonlinear effects associated with the bearing friction

cause disturbances that are highly correlated in time and are not well represented by
the present white-noise model of the disturbance torques. In spite of the substantial
disturbance torques (Figure 3.9), however, it is evident that the simulationsindicate
that the closed-loop flexible body dynamics, in fact, follow the near-minimum-time

- tigid-body motion closely while effectively suppressing vibration, as shown Figure

3.10. In addition to the variables graphed in Figures 3.9 and 3.10, we confirmed
that the energy of the first 10 modes was effectively suppressed. These simulated
results are very consistent with the experimental results discussed in the following
section and those presented in {Junkins 1991,1993).

Experimental Results

In all of the experiments in the following discussion, the target final angle is set
to 40° and umax = 400 oz-in. A detailed description of the hardware is given
in Appendix I. We overview the system as follows: the configuration (Figure 3.4,
Table 3.2) has a span of approximately 9 ft and has six natural frequencies below
20 Hz. The system is accurately balanced, and the four aluminum appendages’

309



Sec. 3.6. Dynamics, Stability, and Control of a Distributed Parameter System 157

Angular Dispalcement [deg]

Angular Velocity [deg/sec]
o

] Simtaton
=20 1 . :“'""“: ------ Reference
0.0 20 40 6.0 80 100
Time { sec]

Figure 3.10. Closed-loop 40° maneuver with random disturbances

geometric, mass, and stiffness parameters are matched to high precision; the first
three measured cantilevered natural frequencies of the four individual beams were
found to be identical t56 within 0.05 Hz.

With this design, the appendages vibrate almost exclusively in the horizontal
plane; the hub is balanced on a custom-designed needle-jewel bearing that constrains
the hub to rotate about the vertical axis. Our measurements confirm that negligible
out-of-plane motion occurs in our experiments, although there is occasional evidence
of small beam torsional vibrations. Also, to very high accuracy, we can state that our
experimental results confirmed that only the antisymmetric in-plane modes [implicit
in the derivation of Eqgs. (3.83)] were excited during rest-to-rest maneuvers using
the hub torque actuator. The bearing stiction/friction torque is significant (~ 20
oz-in.), but is sufficiently small and predictable to permit meaningful experiments.
Aerodynamic damping is important only during the most rapid slew maneuvers;
in most cases, it represents a small perturbation as compared to the larger active
vibration damping introduced by the feedback controller. The control torque is
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achieved by means of a reaction wheel mounted to the shaft of a DC motor [Figure
3.4(c)], which is, in turn, mounted to the hub. The commanded motor torque
is achieved by precision current control using power amplifiers, as described in
Appendix I of [Junkins 1993]. The angular rotation of the hub is measured using a
Teledyne-Gurley angle encoder, accurate to about 0.01°, whereas the root bending
moment and shear force estimates are derived from conventional full-bridge strain-
gauge measurements. The derived estimates of the angular velocity history have
a variance of approximately 1°/s and a time lag of 0.01 s. The noise and phase
lag in the angular velocity estimates and the strain-gauge-derived root shear force
and bending moment estimates limit the bandwidth of the closed-loop system to
the range from approximately 0 to 10 Hz. The errors (noise and phase lag) in the
derived hub angular velocity estimates represent the main source of the precision
and bandwidth constraints of the experimental implementations. The control loops
were closed, for all experiments discussed later, at 75 Hz; the angle encoder was also
sampled at 75 Hz, whereas the strain gauges were sampled an order of magnitude
faster, and filtered to reduce the effects of sensor noise a.nd higher-frequency modes
outside the bandwidth of our controller.

Figure 3.11 shows the experimental system response for a maneuver using control
law I [the constant gain control law of Eq. (3.88)] with g; = 600 oz-in./rad, g2 =
800 oz-in./rad/s, and g3 = 0. Even though control law I [Eq. (3.88)] is anticipated
to be poorly suited for large-angle maneuvers, we nonetheless apply this law to
carry out 40° maneuvers to provide a reference for the subsequent discussion. Since
the initial position error is large, the maneuvers start from zero with a large initial
discontinuity to a large torque. For this gain selection, we see a large hub angle
overshoot (~10°) and significant structural vibration that was effectively suppressed
by around 12 s; the control was terminated at 16 s. These results were repeatable;
however, the residual angle was typically ~ 0.25° because the constant gain g
could not be set sufficiently large to overcome terminal bearing stiction without
causing initial actuator saturation and large overshoots, and a compromise value
was adopted for the sake of illustration. As is demonstrated in Ref. 5, the overall
maneuver shape and settling time is sensitive to the gains selected; however, less
than 10% reductions in the 12 s settling time can be achieved wlthout initially
saturating the actuator.

Control law II, on the other hand, leads.to very attractive nea.r-mmmum-txme
maneuvers. One feasible set of gain settings and torque shaped para.meters leads -
to the experimental results shown in Fxgme 3.12. The effect of using a smooth,
judiciously shaped reference torque history is evident if one compares the output
and control variable histories in Figure 3.12 with those of Figure 3.11. This
implementation of control law II produced much smaller overshoot (= 1.5° vs ~ 10°)
and shorter maneuver time (6 s vs 12 s), and greatly reduced the severity of peak
vibration, compared to control law I. These results, especially when considered
in conjunction with numerous other cases, are reported in [Junkins 1990} and .
[Thompson 1989], provide convincing evidence that control law II is a versatile
and highly effective way to incorporate open-loop torque-shaped optimization with
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Figure 3.11. Experimental results: a 40° maneuver using control law I (g; = 600, g, = 800,
g3 = 0.0).

en route and terminal vibration suppression. The fact that a globally continuous
control structure is implicit in this approach leads to minimal difficulties in realizing
robust control laws. , :

We encountered several practical difficulties in our experimental work, but
these difficulties are not central to our control-law design approach. First, the
root shear force and bending moment approximations obtained using strain-gauge
measurements resulted in sufficiently noisy and nonlinear measurements that, using
this feedback (g3 # 0), only marginally improved the controlled response over, for
example, the results in Figure 3.11. These anomalies resulted, we hypothesize, from
the nonideal beam-clamp effects near the station where the strain measurements
were being made. Any slight play in the clamp due to large root moment variations
would manifest itself in spurious strain measurements. Also, deriving the angular
velocity estimate from the noisy angle-encoder readout was difficult to accomplish .
with high precision and, as a consequence, we constructed a digital filter to process
the angle encoder data and roll off the frequency content in the rate estimates
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Figure 3.12. Experimental results: a 40° maneuver using control law II (g; = 3000, g2 = 800,
93 = 0.0, @ = 0.2, umax = 400).

above 10 Hz. We found this was useful to avoid erroneous, phase-lagged high-
frequency components of the feedback that disturbed the higher-frequency modes.
These problems can be essentially eliminated, of course, by investing in a more
precise sensor to measure angular displacement and/or angular velocity, as well as
a load cell to measure the root shear and bending moments. Finally, our bearing
presented us with another set of practical difficulties. Based on analysis of our
bearing hardware, it became evident that interaction of the structure with the
bearing accounts for the overwhelming source of disturbance torques. The bearing
friction/stiction model developed from our analysis {Junkins 1990] has the form

Thearing = —C15ign(f) — c6 + HOT (3.102)

where we find ¢; ~ 20 oz-in. and ¢z ~ 0.001 oz-in./rad/s.

Thus, the first (stxctxon) term of Eq. (3.102) dominates the bearmg torque
for moderate 8 and is about 5% of the peak commanded torque of 400 oz-in..
Although we believe that Eq. (3.102) models the bearing friction well, we found
that it is difficult to use this model to compensate for bearing friction in real time
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because angle-encoder noise results in uncertainty in the estimated instants that
switches sign. This difficulty has significant practical consequences. If we modify
our control to compensate for bearing-disturbance torques (essentially, attempt to
cance] it) using Eq. (3.102), the commanded discontinuity (at the estimated time
that 6 changes sign) will not coincide exactly with the actual stiction discontinuity;
even slightly mistimed compensation torque discontinuities can actually worsen the -
disturbance! Although we experimented with several bearing-torque compensation
schemes, we ultimately decided simply to consider bearing torque an anticipated
and well modeled disturbance. Our simulations (such as the results shown in Figure
3.10) indicated that our control approach could easily tolerate disturbances of this
magnitude, and our successful experiments in Figures 3.11 and 3.12 and [Junkins
1990] certainly confirm that our implemented control laws are robust in the presence
of the actual disturbances from all sources. '

This case study provides a good illustration of the mix of theoretical analysis,
numerical computation, and engineering judgment required to carry out successful
applications. The ultimate objective, of course, is to obtain perfect closure between _
theory and experiment. However, it is not realistic toexpect the high degree of
closure obtained above, when faced with more complicated dynamical systems. Note
that excellent results were obtained, in spite of modest investments in sensors and
actuators; however, for systems requiring high precision and wide control bandwith,
it would be necessary to have corresponding improvements in the precision and
bandwith of the sensors. In the context of the above numerical and experimental
results, however, we observe that a large degree of model-error robustness implicit
in our approach stems from our theoretical verification that the control of Eq. (3.88)
remains stabilizing for most of the usual variationsin modeling assumptions, and we
used judicious sensor filtering to roll off the effects of the system dynamics outside
the sensors’ bandwidth. In conclusion, the excellent agreement between theory and

experiment evident in Figures 3.10 and 3.12 represents prototypical (rather than
usual) results.

3.7 CONCLUDING REMARKS

In this chapter, we have summarized the central aspects of Lyapunov stability
theory with particular emphasis upon the role that it can play in designing stable
controllers for nonlinear multibody systems. Several elementary analytical and
numerical examples are provided to illustrate the ideas and to provide some basis
for extrapolating the practical implications of the methods presented. A more
extensive example is offered to introduce some ideas on cooperative control, in
which two or more manipulators are manipulating a payload while cooperating with
each other to minimize a measure of the associated control and constraint forces
and moments. The chapter concludes with an example wherein maneuvers are
designed for a multibody flexible structure and good closure is obtained between |
the analytical, computational, and hardware experimental results. These results
support the theoretical and practical value of these developments.
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L
An Orthogonal Quasi-Coordinate Formulation of

Dynamical Models for Nonlinear Structural Systems
Classical Approach
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Orthogonal Quasi-Coordinate Approach: Unconstrained Case
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A Low-Dimensioned Example

Nonlinear Mechanism
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Some Simulations
Method 1: statevectoris {v,x}, using orthogonal quasi — coordinate approach

Method?2: statevectoris{x,x}, using M(x) = CTS 2 Cto solvefor i
Method3: statevectoris{x,x}, using LDU decomp. of M(x) to solve for X
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Nonlinear Gust Response for The Freewing
Scorpion Vehicle in Loiter Mode

U.. =52ft/s (~36mph))
—

Vertical Harmonic Gust:

A sinot|| Landing/Takoff/Loiter Mode

Typical Nonlinear lIAccelerationll Responses vs time

= 5f1/s, 0 = 1.5HZ

A= 5ft/s ©=235HZ e
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Flow Chart for Construction of Exactly Solved

- Benchmark Problems Near an Approximate Solution

GIVEN A DYNAMICAL SYSTEM
() =f(t,x, x,p),

where D is the model parameter vector
x(to) =x0, X(tp)=3%0, to <t< tr

GIVEN A NUMERICAL SOLUTION PROCESS

{*1,%,Xn}, where x;=%x(t;)

ORTHOGONAL CHEBYSHEV APPROXIMATION

xp (t) = smoothinterpolation of

{X1,%9, " Xn}

INVERSE DYNAMICS
e(t) = Xp(2) = ft, xp (2), % (2), D)

BENCHMARK PROBLEM

The known interpolated solution: xp, (1)

exactly satisfies the differential eqns
i(t) =f(t,x,x,p) +e(t),

with the boundary conditions:
*(to) =xp(t0), X(to) =xp(to), to <t<ts
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A Three Body Distributed Parameter System

Tip Mass myjp
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Example ODE/PDE Hybrid System | ]
Exact Hybrid System Model:

J’é+j: plx+r)[y+ (x%r)é]dx+m(L+ N[(L+ )0 +¥]

.. L
+J[6 +55’] —j; f(x)(x+r)dx+ (L+r)frip +unp + u(t)=0

p[ji +(x+ r)é] +EIy"" - f(t,x) =0
with the boundary conditions:
EIy”(t,L) —m[(L+7)0 +§(t,L)] +fup(t) =0

EIY’(t,L) +J[8 +¥ (&, L)] — wip(£) =0

Approximate FEM System Model:

1 1
. O 0
[ rites Mooll1+ 0 llo-|d F
0 0

r‘/‘oLf(t,x)(x+r)dx

[l v @ax+ [ st 0w ()
[} e 20w yds+ [ fie e e

(n-2)h (n-1), A )
[ sty s [T finsyg® (s

e X)W (x)dx

W (x)dx

(n-1

\J(n-1)h

5 Benchmark System Model: Given interpolated {y(t,x), 0(z)},find
{9f(2,x), 6u(t), O 1ip (1), Suyp } to exactly satisfy the hybrid system of odes/pdes:

fé+f:‘p(x+r)[ji+(x+r)§]dx+m(L+r)[(L+r)§+55]—ﬁ{f(f,x)'*'sf(f»x)}(x'*'r)dx

+J[0+5 ]+ L+ {fup + rip} + {usip + dup } + {u+du} =0 = step4: du(t)

p[y+ (x+r)8] + EIy™ — {f(t,x) + &f(t,x)} =0 = step 1: §f(t,x)
with the boundary conditions:

EIy”(t,L) =m[(L+1)0 +5(t,L)] + {frp(2) + & sp ()} =0 = step?2: &fip(1)

EIy’(t,L) +J[6 +5 (2, L)] — {urip (£) + durp ()} =0 => step 3: duyip (1)
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